990 resultados para Peripheral nerve sensitization
Resumo:
Over the past few years, the control of pain exerted by glial cells has emerged as a promising target against pathological pain. Indeed, changes in glial phenotypes have been reported throughout the entire nociceptive pathway, from peripheral nerves to higher integrative brain regions, and pharmacological inhibition of such glial reactions reduces the manifestation of pain in animal models. This complex interplay between glia and neurons relies on various mechanisms depending both on glial cell types considered (astrocytes, microglia, satellite cells, or Schwann cells), the anatomical location of the regulatory process (peripheral nerve, spinal cord, or brain), and the nature of the chronic pain paradigm. Intracellularly, recent advances have pointed to the activation of specific cascades, such as mitogen-associated protein kinases (MAPKs) in the underlying processes behind glial activation. In addition, given the large number of functions accomplished by glial cells, various mechanisms might sensitize nociceptive neurons including a release of pronociceptive cytokines and neurotrophins or changes in neurotransmitter-scavenging capacity. The authors review the conceptual advances made in the recent years about the implication of central and peripheral glia in animal models of chronic pain and discuss the possibility to translate it into human therapies in the future.
Resumo:
Introduction.- Since the work of the "International Association for the Study of Pain" (IASP), complex regional pain syndrome type 1 (CRPS I) or algodystrophy includes motor disorders (tremor, dystony, myoclony) as diagnosis criterion. This can lead to confusion with some neurologic disorders which can wrongly be considered as CRPS I. The following observation illustrates this problem.Observation.- A 31-year-old man was hospitalised in a rehabilitation clinic in April 2007 with suspected CRPS I with persistent pain in the left leg. In 2005, the patient underwent ligament reconstruction at the right ankle. In May 2006, a recurrence of his ankle sprain was treated conservatively. The course of this pathology was unfavourable with an extension of the pain areas (leg and foot) as well as an appearance of abnormal motion. Toe motion in abduction was observed (especially T5) followed by a flexion cramp; an hypoesthesia in the sural nerve area, a scar allodynia and discrete vasomotor disorders. The scintigraphy was compatible with a stage 2 algodystrophy. Lower limb electromyography was normal; measurement of pseudo periodic activity of the motor unit at the foot level (abductor of the 5th toe, 4th interosseous). A "Painful legs and moving toes syndrome" was diagnosed which was treated with gabapentin and carbamazepine with a partial improvement.Discussion.- The "Painful legs and moving toes syndrome" is a rare pathology rehabilitation specialists should recognize. The origin is often peripheral nerve damage. The medullar interneuron activation (between the dorsal and ventral horn) is considered as the source of the efferent motor nerves which are responsible for the abnormal movements. This observation illustrates the need for a demanding approach before establishing the diagnosis of CRPS I and the respect of the 4th criterion of the ASP (exclusion of this syndrome when another pathology may explain pain and dysfunction).
Resumo:
Recently published criteria using clinical (ataxia or asymmetrical distribution at onset or full development, and sensory loss not restricted to the lower limbs) and electrophysiological items (less than two abnormal lower limb motor nerves and at least an abolished SAP or three SAP below 30% of lower limit of normal in the upper limbs) were sensitive and specific for the diagnosis of sensory neuronopathy (SNN) (Camdessanche et al., Brain, 2009). However, these criteria need to be validated on a large multicenter population. For this, a database collecting cases from fifteen Reference Centers for Neuromuscular diseases in France and Switzerland is currently developed. So far, data from 120 patients with clinically pure sensory neuropathy have been collected. Cases were classified independently from the evaluated criteria as SNN (53), non-SNN (46) or suspected SNN (21) according to the expert's diagnosis. Using the criteria, SNN was possible in 83% (44/53), 23.9% (11/46) and 71.4% (15/21) of cases, respectively. In the non-SSN group, half of the patients with a diagnosis of possible SSN had an ataxic form of inflammatory demyelinating neuropathy. In the SNN group, half of those not retained as possible SNN had CANOMAD, paraneoplasia, or B12 deficiency. In a second step, after application of the items necessary to reach the level of probable SNN (no biological or electrophysiological abnormalities excluding SNN; presence of onconeural antibody, cisplatin treatment, Sj ¨ ogren's syndrome or spinal cord MRI high signal in the posterior column), a final diagnosis of possible or probable SNN was obtained in, respectively, 90.6% (48/53), 8.8% (4/45), and 71.4% (15/21) of patients in the three groups. Among the 5 patients with a final non-SNN but initial SNN diagnosis, 3 had motor conduction abnormalities (one with CANOMAD) and among the 4 patients with a final SNN but initial non-SSN diagnosis, one had anti-Hu antibody and one was discussed as a possible ataxic CIDP. These preliminary results confirm the sensitivity and specificity of the proposed criteria for the diagnosis of SNN.
Resumo:
This review describes some dysimmune neuromuscular disorders and their recent management: syndrome of peripheral nerve hyperexcitability (treatment of cramps, immunosuppressors); Guillain-Barré syndrome (new mechanisms and consensus treatment); chronic inflammatory demyelinating polyradiculoneuropathy (new indication for the use of pulse dexamethasone, new scores of activity); importance of subcutaneous immunoglobulin in multifocal motor neuropathy and of infusions of rituximab in myasthenia gravis; new entities in myositis and their treatment.
Resumo:
Background: Neuropathic pain is associated with altered expression of voltage-gated sodium channels (VGSCs) leading to peripheral nerve hyperexcitability. Interestingly, in cell expression systems, the ubiquitin ligase Nedd4-2 regulates the cell membrane density of the most abundant peripheral and pain-related VGSC, namely Nav1.7, and decreases its sodium current. Yet nothing is known about the involvement of Nedd4-2 in nociception and chronic pain. Therefore, the goal of this study is (i) to characterize Nedd4-2 and Nav1.7 expression in an experimental model of neuropathic pain (ii) to design by viral vector-mediated gene therapy an approach to depict the implication of Nedd4-2 in chronic pain. Methods: Western Blot and immunohistochemistry experiments detecting Nav1.7 and Nedd4-2 were performed in rodent DRGs 7 days after spared nerve injury (SNI). For the viral vector-mediated gene therapy, a recombinant Adeno-Associated Virus (rAAV2/6) was generated expressing the Nedd4-2 gene. Intrathecal injection of rAAV2/6 was followed 2 weeks after by the SNI surgery. Data are expressed in mean ± SEM, n = 4 in each condition. Results: Immunofluorescence on DRGs neurons reveals a decreased number of positive Nedd4-2 cells in the SNI model (27.0 ± 1.2%) versus sham group (43.4 ± 3.5%; p <0.005), as well as an increase in positive Nav1.7 cells in SNI (50.1 ± 2.9%) versus Sham (41.6 ± 1.8%; p <0.05). The change of Nedd4-2 expression was confirmed by western-blot analysis. In addition, we show that Nedd4-2 and Nav1.7 are largely expressed in overlapping cell populations, chiefly colocalizing with markers of small nociceptive neurons. Furthermore, we report that intrathecal injection of rAAV is able to counteract the reduction of Nedd4-2 expression in SNI animals. Conclusion: Our results indicate that Nedd4-2 is mainly expressed in nociceptors and downregulated after nerve injury. Moreover, our data suggest that the reduction of Nedd4-2, after nerve injury, may modulate Nav1.7 activity and contribute to hyperexcitability in neuropathic pain. A normal level of Nedd4-2 can be restored using a viral vector and we will further assess its functional effect on pain sensitivity.
Resumo:
Soft tissue sarcomas (STS) with complex genomic profiles (50% of all STS) are predominantly composed of spindle cell/pleomorphic sarcomas, including leiomyosarcoma, myxofibrosarcoma, pleomorphic liposarcoma, pleomorphic rhabdomyosarcoma, malignant peripheral nerve sheath tumor, angiosarcoma, extraskeletal osteosarcoma, and spindle cell/pleomorphic unclassified sarcoma (previously called spindle cell/pleomorphic malignant fibrous histiocytoma). These neoplasms show, characteristically, gains and losses of numerous chromosomes or chromosome regions, as well as amplifications. Many of them share recurrent aberrations (e.g., gain of 5p13-p15) that seem to play a significant role in tumor progression and/or metastatic dissemination. In this paper, we review the cytogenetic, molecular genetic, and clinicopathologic characteristics of the most common STS displaying complex genomic profiles. Features of diagnostic or prognostic relevance will be discussed when needed.
Resumo:
Several high-quality publications were published in 2013 and some major trials studies were started. In Guillain-Barré syndrome, events included the launch of IGOS and a better understanding of diagnostic limits, the effect of influenza vaccination, and better care, but uncertainty remains about analgesics. A new mouse model was also described. In chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), diagnostic pitfalls can be recalled. Our knowledge of underlying pathophysiological processes has improved, and the value of monitoring with function and deficit scores has been demonstrated. IVIG can sometimes be effective longer than expected, but CIDP remains sensitive to corticosteroids, particularly with the long-term beneficial effects of megadose dexamethasone. The impact of fingolimod remains to be demonstrated in an ongoing trial. Advances concerning multifocal motor neuropathy, inflammatory plexopathy, and neuropathy with anti -MAG activity are discussed but treatments already recognized as effective should not be changed. Imaging of peripheral nerve progresses.
Resumo:
Diabetic peripheral neuropathy (DPN) is a common complication affecting more than one third of diabetes mellitus (DM) patients. Although all cellular components participating in peripheral nerve function are exposed to and affected by the metabolic consequences of DM, nodal regions, areas of intense interactions between Schwann cells and axons, may be particularly sensitive to DM-induced alterations. Nodes are enriched in insulin receptors, glucose transporters, Na(+) and K(+) channels, and mitochondria, all implicated in the development and progression of DPN. Latest results particularly reinforce the idea that changes in ion-channel function and energy metabolism, both of which depend on axon-glia crosstalk, are among the important contributors to DPN. These insights provide a basis for new therapeutic approaches aimed at delaying or reversing DPN.
Resumo:
A wealth of literature has provided evidence that reactive tissue at the site of CNS injury is rich in chondroitin sulfate proteoglycans which may contribute to the non-permissive nature of the CNS. We have recently demonstrated using a murine model of human brachial plexus injury that the chondroitin sulfate proteoglycans Neurocan and Brevican are differentially expressed by two subsets of astrocytes in the spinal cord dorsal root entry zone (DREZ) following dorsal root lesion (Beggah et al., Neuroscience 133: 749-762, 2005). However, direct evidence for a growth-inhibitory role of these proteoglycans in vivo is still lacking. We therefore performed dorsal root lesion (rhizotomy) in mice deficient in both Neurocan and Brevican. Rhizotomy in these animals resulted in no significant increase in the number of sensory fibres regenerating through the DREZ compared to genetically matched controls. Likewise, a conditioning peripheral nerve lesion prior to rhizotomy, which increases the intrinsic growth capacity of sensory neurons, enhanced growth to the same extent in transgenic and control mice, indicating that absence of these proteoglycans alone is not sufficient to further promote entry into the spinal cord. In contrast, when priming of the median nerve was performed at a clinically relevant time, i.e. 7 weeks post-rhizotomy, the growth of a subpopulation of sensory axons across the DREZ was facilitated in Neurocan/Brevican-deficient, but not in control animals. This demonstrates for the first time that (i) Neurocan and/or Brevican contribute to the non-permissive environment of the DREZ several weeks after lesion and that (ii) delayed stimulation of the growth program of sensory neurons can facilitate regeneration across the DREZ provided its growth-inhibitory properties are attenuated. Post-injury enhancement of the intrinsic growth capacity of sensory neurons combined with removal of inhibitory chondroitin sulfate proteoglycans may therefore help to restore sensory function and thus attenuate the chronic pain resulting from human brachial plexus injury.
Resumo:
Non-malignant inflammatory sensory polyganglionopathy (NISP) is the most common form of acquired ganglionopathies, a rare and distinct subgroup of peripheral nerve diseases characterized by a primary degeneration of sensory neurons in dorsal root ganglia. There is a rational for the use of immune modifying agents (IMA) in NISP since an underlying auto-immune process is demonstrated or suspected. However, commonly used IMA such as corticosteroids, azathioprine, methotrexate or IVIG do not prevent disease's progression in the majority of patients. The use of newer IMA, especially those directed against B-cells, may be a therapeutic alternative. An interesting candidate is rituximab, a mouse-human chimeric anti CD20 antibody that specifically eliminates B-cells and B-cells precursors.Objectives: This is a prospective open label pilot study to determine the efficacy of rituximab treatment in NISP patients, who did not respond to commonly used IMA.Methods: Five patients (40% male) with a mean age of 55 years (range 49-67), diagnosed with NISP after extensive work-up, were treated (schema used for one cure: 2 9 1gr within 15 days interval). Neurological scores (NIS, ISSS, ODSS) and B cell counts were assessed at baseline and during clinical follow-up at 2 and 6 monthsto assess treatment efficacy.Results: The treatment was generally well tolerated. Minor adverse events reported were transient arterial hypotension during the infusions in two patients and intermittent mild leucopenia in one patient. Clinical evolution during the follow-up period was characterized by a stability of the functional scores in four patients (80%) and the continuation of disability progression of one patient (20%). CD4 cells disappeared in all patients after the second infusion, an effect that lasted until the follow up at 6 months.Conclusion: The preliminary results of this pilot study indicate that rituximab is generally well tolerated and prevents progression of disability during the 6-month observation period in NISP patients. Inclusion of additional patients and extending of the follow-up period are intended to further investigate the efficacy of rituximab in NISP.
Resumo:
La douleur neuropathique est une forme de douleur chronique apparaissant suite à des lésions du système nerveux somato-sensoriel. Caractérisée par une plasticité neuronale inadapté, elle est très souvent intense, invalidante, associe des symptômes comme l'allodynie ou l' hyperalgésie et reste difficile à traiter avec les agents thérapeutiques actuels. Le thème de mon travail de thèse se concentre sur des mécanismes moléculaires de modulation des canaux sodiques voltage-dépendants suite à une lésion du nerf périphérique. Dans l'article présenté en annexe, j'ai focalisé mon travail sur une protéine, Nedd4-2, qui est une ligase ubiquitine. Elle a pour rôle de réguler et d'internaliser dans la cellule des protéines membranaires dont les canaux sodiques. Suite aux lésions du système nerveux périphérique, il existe une hyperexcitabilité neuronale engendrée notamment par un surplus et une dysrégulation des canaux sodiques à la membrane cellulaire. Dans 1 'hypothèse que l'ubiquitine ligase Nedd4-2 soit présente dans les neurones sensitifs primaires et ait un rôle dans la régulation des canaux sodiques, nous avons identifié cette protéine dans les neurones nociceptifs primaires du rat. En utilisant des techniques de Western Blot et d'immunohistochimie, j'ai trouvé que Nedd4-2 est présente dans presque 50% des neurones du ganglion spinal et ces neurones sont principalement des neurones nociceptifs. Dans un modèle expérimental de douleur neuropathique (SN I, pour spared nerve injury), Nedd4-2 se retrouve significativement diminuée dans le tissu du ganglion spinal. J'ai également investigué 1' expression de 2 isoformes des canaux sodiques connues pour leur implication dans la douleur, Navl.7 et Navl.8, et ces 2 isoformes se retrouvent dans les mêmes neurones que Nedd4-2. La caractérisation détaillée est décrite dans le manuscrit: «Neuronal expression of the ubiquitin ligase Nedd4-2 in rat dorsal root ganglia: modulation in the SNI model of neuropathic pain; Cachemaille M, Laedermann CJ, Pertin M, Abriel H, Gasselin RD, Decosterd 1.» Les résultats obtenus indiquent que Nedd4-2, en étant downrégulé après une lésion nerveuse, pourrait ainsi contribuer à une augmentation des canaux sodiques fonctionnels à la membrane. Ainsi Nedd4-2 pourrait être proposée comme cible thérapeutique de manière alternative aux bloqueurs de canaux sodiques. Ce travail a permis l'initiation d'autres expériences. J'ai contribué activement à la construction de vecteurs viraux type adéno-associé recombinant (rAA V2/6) et surexprimé la protéine in vivo dans les ganglions spinaux. Cette partie de mon travail se trouve intégrée dans d'autres travaux de mon laboratoire d'accueil qui a pu démontrer les effets fonctionnels de cette approche sur les courants sodiques enregistrés par électrophysiologie et une diminution de la douleur neuropathique chez la souris. - Abstract-Neuronal hyperexcitability following peripheral nerve lesions may stem from altered activity of voltagegated sodium channels (VGSCs), which gives rise toallodynia or hyperalgesia. In vitro, the ubiquitin ligase Nedd4-2 is a negative regulator of VGSC a-subunits (Nav), in particular Nav1.7, a key actor in nociceptor excitability. We therefore studied Nedd4-2 in rat nociceptors, its co-expression with Nav1.7 and Nav1.8, and its regulation in pathology. Adult rats were submitted to the spared nerve injury (SNI) model of neuropathic pain or injected with complete Freund's adjuvant (CFA), a model of inflammatory pain. L4 dorsal root ganglia (DRG) were analyzed in shamoperated animals, seven days after SNI and 48 h after CFA with immunofluorescence and Western blot. We observed Nedd4-2 expression in almost 50% of DRG neurons, mostly small and medium-sized. A preponderant localization is found in the non-peptidergic sub-population. Additionally, 55.7± 2.7% and 55.0 ±3.6% of Nedd4-2-positive cells are co-labeled with Nav1.7 and Nav1.8 respectively. SNI significantly decreases the proportion of Nedd4-2-positive neurons from 45.9± 1.9% to 33.5± 0.7% (p < 0.01) and the total Nedd4-2 protein to 44%± 0.13% of its basal level (p <0.01, n = 4 animals in each group, mean± SEM). In contrast, no change in Nedd4-2 was found after peripheral inflammation induced by CFA. These results indicate that Nedd4-2 is present in nociceptive neurons, is downregulated after peripheral nerve injury, and might therefore contribute to the dysregulation of Navs involved in the hyperexcitability associated with peripheral nerve injuries.
Resumo:
OBJECTIVE: To determine whether an increase in the rate of undesirable events occurs after care provided by trainees at the beginning of the academic year. DESIGN: Retrospective cohort study using administrative and patient record data. SETTING: University affiliated hospital in Melbourne, Australia. PARTICIPANTS: 19,560 patients having an anaesthetic procedure carried out by first to fifth year trainees starting work for the first time at the hospital over a period of five years (1995-2000). MAIN OUTCOME MEASURES: Absolute event rates, absolute rate reduction, and rate ratios of undesirable events. RESULTS: The rate of undesirable events was higher at the beginning of the academic year compared with the rest of the year (absolute event rate 137 v 107 per 1000 patient hours, relative rate reduction 28%, P<0.001). The overall adjusted rate ratio for undesirable events was 1.40, 95% confidence interval 1.24 to 1.58. This excess risk was seen for all residents, regardless of their level of seniority. The excess risk decreased progressively after the first month, and the trend disappeared fully after the fourth month of the year (rate ratio for fourth month 1.21, 0.93 to 1.57). The most important decreases were for central and peripheral nerve injuries (relative difference 82%), inadequate oxygenation of the patient (66%), vomiting/aspiration in theatre (53%), and technical failures of tracheal tube placement (49%). CONCLUSIONS: The rate of undesirable events was greater among trainees at the beginning of the academic year regardless of their level of clinical experience. This suggests that several additional factors, such as knowledge of the working environment, teamwork, and communication, may contribute to the increase.
Resumo:
Glutamate transport through astrocytic excitatory amino-acid transporters (EAAT)-1 and EAAT-2 is paramount for neural homeostasis. EAAT-1 has been reported in secreted extracellular microvesicles (eMV, such as exosomes) and because the protein kinase C (PKC) family controls the sub-cellular distribution of EAATs, we have explored whether PKCs drive EAATs into eMV. Using rat primary astrocytes, confocal immunofluorescence and ultracentrifugation on sucrose gradient we here report that PKC activation by phorbol myristate acetate (PMA) reorganizes EAAT-1 distribution and reduces functional [(3)H]-aspartate reuptake. Western-blots show that EAAT-1 is present in eMV from astrocyte conditioned medium, together with NaK ATPase and glutamine synthetase all being further increased after PMA treatment. However, nanoparticle tracking analysis reveals that PKC activation did not change particle concentration. Functional analysis indicates that eMV have the capacity to reuptake [(3)H]-aspartate. In vivo, we demonstrate that spinal astrocytic reaction induced by peripheral nerve lesion (spared nerve injury, SNI) is associated with a phosphorylation of PKC δ together with a shift of EAAT distribution ipsilaterally. Ex vivo, spinal explants from SNI rats release eMV with an increased content of NaK ATPase, EAAT-1 and EAAT-2. These data indicate PKC and cell activation as important regulators of EAAT-1 incorporation in eMV, and raise the possibility that microvesicular EAAT-1 may exert extracellular functions. Beyond a putative role in neuropathic pain, this phenomenon may be important for understanding neural homeostasis and a wide range of neurological diseases associated with astrocytic reaction as well as non-neurological diseases linked to eMV release.
Resumo:
The central and peripheral nervous systems are involved in multiple age-dependent neurological deficits that are often attributed to alterations in function of myelinating glial cells. However, the molecular events that underlie the age-related decline of glial cell function are unknown. We used Schwann cells as a model to study biological processes affected in glial cells by aging. We comprehensively profiled gene expression of the Schwann cellrich mouse sciatic nerve throughout life, from day of birth until senescence (840 days of age). We combined the aging data with the microarray transcriptional data obtained using nerves isolated from Schwann cell-specific neuropathy-inducing mutants MPZCre/+/Lpin1fE2−3/fE2−3 , MPZCre/+/ScapfE1/fE1 and Pmp22-null mice. The majority of age related transcripts were also affected in the analyzed mouse models of neuropathy (54.4%) and in development (59.5%) indicating a high level of overlapping in implicated molecular pathways. We observed that compared to peripheral nerve development, dynamically changing expression profiles in aging have opposite (anticorrelated) orientation while they copy the orientation of transcriptional changes observed in analyzed neuropathy models. Subsequent clustering and biological annotation of dynamically changing transcripts revealed that the processes most significantly deregulated in aging include inflammatory/immune response and lipid biosynthesis/metabolism. Importantly, the changes in these pathways were also observed in myelinated oligodendrocyte-rich optic nerves of aged mice, albeit with lower magnitude. This observation suggests that similar biological processes are affected in aging glial cells in central and peripheral nervous systems, however with different dynamics. Our data, which provide the first comprehensive comparison of molecular changes in glial cells in three distinct biological conditions comprising development, aging and disease, provide not only a new inside into the molecular alterations underlying neural system aging but also identify target pathways for potential therapeutic approaches to prevent or delay complications associated with age-related and inherited forms of neuropathies. *Current address: Department of Physiology, UCSF, San Francisco, CA, USA.
Resumo:
The central and peripheral nervous systems are involved in multiple agedependent neurological deficits that are often attributed to alterations in function of myelinating glial cells. However, the molecular events that underlie the age-related decline of glial cell function are unknown. We used Schwann cells as a model to study biological processes affected in glial cells by aging. We comprehensively profiled gene expression of the Schwann cell-rich mouse sciatic nerve throughout life, from day of birth until senescence (840 days of age). We combined the aging data with the microarray transcriptional data obtained using nerves isolated from Schwann cell-specific neuropathy-inducing mutants MPZCre/þ/Lpin1fE2-3/fE2-3, MPZCre/þ/ScapfE1/fE1 and Pmp22-null mice. A majority of age related transcripts were also affected in the analyzed mouse models of neuropathy (54.4%) and in development (59.5%) indicating a high level of overlapping in implicated molecular pathways. We observed that compared to peripheral nerve development, dynamically changing expression profiles in aging have opposite (anticorrelated) orientation while they copy the orientation of transcriptional changes observed in analyzed neuropathy models. Subsequent clustering and biological annotation of dynamically changing transcripts revealed that the processes most significantly deregulated in aging include inflammatory/ immune response and lipid biosynthesis/metabolism. Importantly, the changes in these pathways were also observed in myelinated oligodendrocyte- rich optic nerves of aged mice, albeit with lower magnitude. This observation suggests that similar biological processes are affected in aging glial cells in central and peripheral nervous systems, however with different dynamics. Our data, which provide the first comprehensive comparison of molecular changes in glial cells in three distinct biological conditions comprising development, aging and disease, provide not only a new inside into the molecular alterations underlying neural system aging but also identify target pathways for potential therapeutical approaches to prevent or delay complications associated with age-related and inherited forms of neuropathies.