983 resultados para Periodic and chaotic motions
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Context. In April 2004, the first image was obtained of a planetary mass companion (now known as 2M 1207 b) in orbit around a self-luminous object different from our own Sun (the young brown dwarf 2MASSW J 1207334-393254, hereafter 2M 1207 A). That 2M 1207 b probably formed via fragmentation and gravitational collapse offered proof that such a mechanism can form bodies in the planetary mass regime. However, the predicted mass, luminosity, and radius of 2MI207 b depend on its age, distance, and other observables, such as effective temperature. Aims. To refine our knowledge of the physical properties of 2M 1207 b and its nature, we accurately determined the distance to the 2M 1207 A and b system by measuring of its trigonometric parallax at the milliarcsec level. Methods. With the ESO NTT/SUS12 telescope, we began a campaign of photometric and astrometric observations in 2006 to measure the trigonometric parallax of 2M 1207 A. Results. An accurate distance (52.4 +/- 1.1 pc) to 2M1207A was measured. From distance and proper motions we derived spatial velocities that are fully compatible with TWA membership. Conclusions. With this new distance estimate, we discuss three scenarios regarding the nature of 2M 1207 b: (1) a cool (1150 +/- 150 K) companion of mass 4 +/- 1 M-Jup (2) a warmer (1600 +/- 100 K) and heavier (8 +/- 2 M-Jup) companion occulted by an edge-on circumsecondary disk, or (3) a hot protoplanet collision afterglow.
Resumo:
We analyze the finite-size corrections to entanglement in quantum critical systems. By using conformal symmetry and density functional theory, we discuss the structure of the finite-size contributions to a general measure of ground state entanglement, which are ruled by the central charge of the underlying conformal field theory. More generally, we show that all conformal towers formed by an infinite number of excited states (as the size of the system L -> infinity) exhibit a unique pattern of entanglement, which differ only at leading order (1/L)(2). In this case, entanglement is also shown to obey a universal structure, given by the anomalous dimensions of the primary operators of the theory. As an illustration, we discuss the behavior of pairwise entanglement for the eigenspectrum of the spin-1/2 XXZ chain with an arbitrary length L for both periodic and twisted boundary conditions.
Resumo:
Clock signal distribution in telecommunication commercial systems usually adopts a master-slave architecture, with a precise time basis generator as a master and phase-locked loops (PLLs) as slaves. In the majority of the networks, second-order PLLs are adopted due to their simplicity and stability. Nevertheless, in some applications better transient responses are necessary and, consequently, greater order PLLs need to be used, in spite of the possibility of bifurcations and chaotic attractors. Here a master-slave network with third-order PLLs is analyzed and conditions for the stability of the synchronous state are derived, providing design constraints for the node parameters, in order to guarantee stability and reachability of the synchronous state for the whole network. Numerical simulations are carried out in order to confirm the analytical results. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This work discusses a 4D lung reconstruction method from unsynchronized MR sequential images. The lung, differently from the heart, does not have its own muscles, turning impossible to see its real movements. The visualization of the lung in motion is an actual topic of research in medicine. CT (Computerized Tomography) can obtain spatio-temporal images of the heart by synchronizing with electrocardiographic waves. The FOV of the heart is small when compared to the lung`s FOV. The lung`s movement is not periodic and is susceptible to variations in the degree of respiration. Compared to CT, MR (Magnetic Resonance) imaging involves longer acquisition times and it is not possible to obtain instantaneous 3D images of the lung. For each slice, only one temporal sequence of 2D images can be obtained. However, methods using MR are preferable because they do not involve radiation. In this paper, based on unsynchronized MR images of the lung an animated B-Repsolid model of the lung is created. The 3D animation represents the lung`s motion associated to one selected sequence of MR images. The proposed method can be divided in two parts. First, the lung`s silhouettes moving in time are extracted by detecting the presence of a respiratory pattern on 2D spatio-temporal MR images. This approach enables us to determine the lung`s silhouette for every frame, even on frames with obscure edges. The sequence of extracted lung`s silhouettes are unsynchronized sagittal and coronal silhouettes. Using our algorithm it is possible to reconstruct a 3D lung starting from a silhouette of any type (coronal or sagittal) selected from any instant in time. A wire-frame model of the lung is created by composing coronal and sagittal planar silhouettes representing cross-sections. The silhouette composition is severely underconstrained. Many wire-frame models can be created from the observed sequences of silhouettes in time. Finally, a B-Rep solid model is created using a meshing algorithm. Using the B-Rep solid model the volume in time for the right and left lungs were calculated. It was possible to recognize several characteristics of the 3D real right and left lungs in the shaded model. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Qualitative data analysis (QDA) is often a time-consuming and laborious process usually involving the management of large quantities of textual data. Recently developed computer programs offer great advances in the efficiency of the processes of QDA. In this paper we report on an innovative use of a combination of extant computer software technologies to further enhance and simplify QDA. Used in appropriate circumstances, we believe that this innovation greatly enhances the speed with which theoretical and descriptive ideas can be abstracted from rich, complex, and chaotic qualitative data. © 2001 Human Sciences Press, Inc.
Resumo:
We give a selective review of quantum mechanical methods for calculating and characterizing resonances in small molecular systems, with an emphasis on recent progress in Chebyshev and Lanczos iterative methods. Two archetypal molecular systems are discussed: isolated resonances in HCO, which exhibit regular mode and state specificity, and overlapping resonances in strongly bound HO2, which exhibit irregular and chaotic behavior. Future directions in this field are also discussed.
Resumo:
Sticky information monetary models have been used in the macroeconomic literature to explain some of the observed features regarding inflation dynamics. In this paper, we explore the consequences of relaxing the rational expectations assumption usually taken in this type of model; in particular, by considering expectations formed through adaptive learning, it is possible to arrive to results other than the trivial convergence to a fixed point long-term equilibrium. The results involve the possibility of endogenous cyclical motion (periodic and a-periodic), which emerges essentially in scenarios of hyperinflation. In low inflation settings, the introduction of learning implies a less severe impact of monetary shocks that, nevertheless, tend to last for additional time periods relative to the pure perfect foresight setup.
Resumo:
Field communication systems (fieldbuses) are widely used as the communication support for distributed computer-controlled systems (DCCS) within all sort of process control and manufacturing applications. There are several advantages in the use of fieldbuses as a replacement for the traditional point-to-point links between sensors/actuators and computer-based control systems, within which the most relevant is the decentralisation and distribution of the processing power over the field. A widely used fieldbus is the WorldFIP, which is normalised as European standard EN 50170. Using WorldFIP to support DCCS, an important issue is “how to guarantee the timing requirements of the real-time traffic?” WorldFIP has very interesting mechanisms to schedule data transfers, since it explicitly distinguishes periodic and aperiodic traffic. In this paper, we describe how WorldFIP handles these two types of traffic, and more importantly, we provide a comprehensive analysis on how to guarantee the timing requirements of the real-time traffic.
Resumo:
We study exotic patterns appearing in a network of coupled Chen oscillators. Namely, we consider a network of two rings coupled through a “buffer” cell, with Z3×Z5 symmetry group. Numerical simulations of the network reveal steady states, rotating waves in one ring and quasiperiodic behavior in the other, and chaotic states in the two rings, to name a few. The different patterns seem to arise through a sequence of Hopf bifurcations, period-doubling, and halving-period bifurcations. The network architecture seems to explain certain observed features, such as equilibria and the rotating waves, whereas the properties of the chaotic oscillator may explain others, such as the quasiperiodic and chaotic states. We use XPPAUT and MATLAB to compute numerically the relevant states.
Resumo:
Activity rhythms in animal groups arise both from external changes in the environment, as well as from internal group dynamics. These cycles are reminiscent of physical and chemical systems with quasiperiodic and even chaotic behavior resulting from “autocatalytic” mechanisms. We use nonlinear differential equations to model how the coupling between the self-excitatory interactions of individuals and external forcing can produce four different types of activity rhythms: quasiperiodic, chaotic, phase locked, and displaying over or under shooting. At the transition between quasiperiodic and chaotic regimes, activity cycles are asymmetrical, with rapid activity increases and slower decreases and a phase shift between external forcing and activity. We find similar activity patterns in ant colonies in response to varying temperature during the day. Thus foraging ants operate in a region of quasiperiodicity close to a cascade of transitions leading to chaos. The model suggests that a wide range of temporal structures and irregularities seen in the activity of animal and human groups might be accounted for by the coupling between collectively generated internal clocks and external forcings.
Resumo:
While fractional calculus (FC) is as old as integer calculus, its application has been mainly restricted to mathematics. However, many real systems are better described using FC equations than with integer models. FC is a suitable tool for describing systems characterised by their fractal nature, long-term memory and chaotic behaviour. It is a promising methodology for failure analysis and modelling, since the behaviour of a failing system depends on factors that increase the model’s complexity. This paper explores the proficiency of FC in modelling complex behaviour by tuning only a few parameters. This work proposes a novel two-step strategy for diagnosis, first modelling common failure conditions and, second, by comparing these models with real machine signals and using the difference to feed a computational classifier. Our proposal is validated using an electrical motor coupled with a mechanical gear reducer.
Resumo:
Nonlinear Dynamics, chaos, Control, and Their Applications to Engineering Sciences: Vol. 6 - Applications of nonlinear phenomena
Resumo:
Until recently, the hard X-ray, phase-sensitive imaging technique called grating interferometry was thought to provide information only in real space. However, by utilizing an alternative approach to data analysis we demonstrated that the angular resolved ultra-small angle X-ray scattering distribution can be retrieved from experimental data. Thus, reciprocal space information is accessible by grating interferometry in addition to real space. Naturally, the quality of the retrieved data strongly depends on the performance of the employed analysis procedure, which involves deconvolution of periodic and noisy data in this context. The aim of this article is to compare several deconvolution algorithms to retrieve the ultra-small angle X-ray scattering distribution in grating interferometry. We quantitatively compare the performance of three deconvolution procedures (i.e., Wiener, iterative Wiener and Lucy-Richardson) in case of realistically modeled, noisy and periodic input data. The simulations showed that the algorithm of Lucy-Richardson is the more reliable and more efficient as a function of the characteristics of the signals in the given context. The availability of a reliable data analysis procedure is essential for future developments in grating interferometry.