930 resultados para Perception, Action, Cognition, Constraints, Coordination


Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent studies show that children with developmental coordination disorder (DCD) have difficulties in generating an accurate visuospatial representation of an intended action, which are shown by deficits in motor imagery. This study sought to test this hypothesis further using a mental rotation paradigm. It was predicted that children with DCD would not conform to the typical pattern of responding when required to imagine movement of their limbs. Participants included 16 children with DCD and 18 control children; mean age for the DCD group was 10 years 4 months, and for controls 10 years. The task required children to judge the handedness of single-hand images that were presented at angles between 0° and 180° at 45° intervals in either direction. Results were broadly consistent with the hypothesis above. Responses of the control children conformed to the typical pattern of mental rotation: a moderate trade-off between response time and angle of rotation. The response pattern for the DCD group was less typical, with a small trade-off function. Response accuracy did not differ between groups. It was suggested that children with DCD, unlike controls, do not automatically enlist motor imagery when performing mental rotation, but rely on an alternative object-based strategy that preserves speed and accuracy. This occurs because these children manifest a reduced ability to make imagined transformations from an egocentric or first-person perspective.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The direction and speed of motion of a one-dimensional (1-D) stimulus, such as a grating, presented within a circular aperture is ambiguous. This ambiguity, referred to as the Aperture Problem (Fennema & Thompson, 1979) results from (i) the inability to detect motion parallel to grating orientation, and (ii) the occlusion of border information, such as the ‘ends’ of the grating, by the surface forming the aperture, Adelson and Movshon's (1982) intcrsection-of-constraints (IOC) model of motion perception describes a two-stage method of disambiguating the motion of 1-D moving stimuli (e.g., gratings) to produce unambiguous motion of two-dimensional (2-D) objects (e.g., plaid patterns) made up of several 1-D components. Specifically, in the IOC model ambiguous 1-D motions extracted by Stage 1 component-selective mechanisms are integrated by Stage 2 pattern-selective mechanisms to produce unambiguous 2-D motion signals. ‘Integration’ in the context of the IOC model involves determining the single motion vector (i.e., combination of direction and speed) which is consistent with the I-D components of a 2-D object. Since the IOC model assumes that 2-D objects undergo pure translation (i.e., without distortion, rotation, etc.), the motion vector consistent with all 1-D components describes the motion of the 2-D object itself. Adelson and Movshon (1982) propose that neural implementation of the computation underlying the IOC model is reflected in the perception of coherent 2-D plaid motion reported when two separately-moving ‘component’ gratings are superimposed. Using these plaid patterns the present thesis assesses the IOC model in terms of its ability to account for the perception of 2-D motion in a variety of circumstances. In the first series of experiments it is argued that the unambiguous motion perceived for a single grating presented within a rectangular aperture (i.e., the Barberpole illusion; Wallach, 1976) reflects application of the IOC computation to the moving 1-D grating and the stationary boundary of the aperture. While contrary to the assumption which underlies the IOC model (viz., that integration occurs between moving 1-D stimuli), evidence consistent with the involvement of the IOC computation in mediating the Barberpole illusion (in which there is only one moving stimulus) is obtained by measuring plaid coherence as a function of aperture shape. It is found that rectangular apertures which bias perceived component motions in directions consistent with plaid direction facilitate plaid coherence, while rectangular apertures which bias perceived component motions in directions inconsistent with plaid direction disrupt plaid coherence. In the second series of experiments, perceived directions of motion of type I symmetrical, type I asymmetrical, and type II plaids are measured with the aim of investigating the deviations in plaid directions reported by Ferrera and Wilson (1990) and Yo and Wilson (1992). Perceived directions of both asymmetrical and type II plaids are shown to deviate away from lOC-predicted directions and towards mean component direction. Furthermore, the magnitude of these deviations is being proportional to the difference between lOC-predicted plaid direction and mean component direction. On the basis of these directional deviations, modification to the IOC model is proposed. In the modified IOC model it is argued that plaid perception involves (i) the activity of Stage 2 pattern-selective mechanisms (and the Stage 1 component-selective mechanisms which input into these pattern-selective mechanisms) involved in implementing the IOC computation, and (ii) component-selective mechanisms which influence plaid perception directly, and ‘extraneously’ to the IOC computation. In the third series of experiments the validity of this modified IOC model, as well as the validity of alternative one-stage models of plaid perception are assessed in relation to perceived directions of plaid-induced MAEs as a function of both plaid direction and mean component direction. It is found that plaid-induced MAEs are shifted away from directions opposite to lOC-predicted plaid direction towards the direction opposite to mean component direction. This pattern of results is taken to be consistent with the modified IOC model which predicts the activity, and adaptation both of mechanisms signalling plaid direction (via implementation of the IOC computation), and ‘extraneous-type’ component-selective mechanisms signalling component directions. Alternative one-stage models which predict the adaptation of only mechanisms signalling plaid direction (the feature-tracking model), or the adaptation only of mechanisms signalling component directions (the distribution-of-activity model), cannot account for the directions of plaid-induced MAEs reported. The ability of the modified IOC model to account for the perceived directions of (i) gratings in rectangular apertures, (ii) various types of plaid in circular apertures, and (iii) directions of plaid-induced MAEs, is interpreted as supporting the proposition that human motion perception is based on a parallel and distributed process involving Stage 2 pattern-selective mechanisms (and the Stage 1 component-selective mechanisms which input into these mechanisms) taken to implement the IOC computation, and component-selective mechanisms taken to provide an 'extraneous' direct contribution to motion perception.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper re-examines the relationship between affect and effect, discussing them as research values that have emerged from the life sciences, the arts and philosophy and, more importantly, considering them as systems of relations underpinning experiential orientation by which to initiate change and hold the world in place. The notion of æffect may be defined as the continuous measure performed upon the systems of affect/effect and reapplied to events and things. Æffect is a coordinated system of cognition where concurrent measures impact on each other. In doing so, they specify perception and action on multiple registers and scales of events. It is important to recognise that the functioning of affective and effective systems in the body allows, and even requires, paradoxical logics to coexist and be deployed as processes that shape the organism-person-environment. Discussion of selected works from Arakawa and Gins will supply examples of tactics that combine built environments with discursive constraints to guide embodied attention. The practice of embodied cognition dilates the thresholds separating the organism from person and the person from environment, and moves towards an atmospheric intricateness (Arakawa and Gins 2003a:25) that may become the blocs of a new materialism for heuristic life.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper suggests ways in which art processes may contribute to the interdisciplinary study of perception and action and the relationships between body, person, and environment. Artists-turned-architects Arakawa and Gins serve as the most advanced example of an interdisciplinary research project in terms of coordinating material processes with contemporary findings, methods, and orientations from across the arts, humanities, and hard and soft sciences. In the first section of the paper, I discuss Arakawa and Gins's Reversible Destiny Lofts at Mitaka as an example of their procedural approach to long-term sustainable experimental environments. In the second section, the tactics through which Arakawa and Gins have repositioned art for the nonart purposes and common research goals are posited. Finally, I briefly outline the disciplinary positions and research values needed in order to move toward a more inclusive and interdisciplinary research practice.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper I argue that many of the core phenomenological insights, including the emphasis on direct perception, are a necessary but not sufficient condition for an adequate account of inter-subjectivity today. I take it that an adequate account of inter-subjectivity must involve substantial interaction with empirical studies, notwithstanding the putative methodological differences between phenomenological description and scientific explanation. As such, I will need to explicate what kind of phenomenology survives, and indeed, thrives, in a milieu that necessitates engagement with the relevant sciences, albeit not necessarily deference to them. There will be two central aims to this paper: 1. to defend the centrality and vitality of phenomenological treatments of inter-subjectivity via a consideration of some remarks in Sartre - which I do think possess a non-trivial unity amongst the various interlocutors - and the manner in which they in fact serve to provide the basis for a better explanation of an array of empirical data than existing inferentialist or mindreading accounts of social cognition (notably Theory Theory, Simulation Theory, and hybrid versions); 2. to offer the methodological resources for renewing phenomenology in a manner that acknowledges ostensibly non-phenomenological moments in theory production - which involve explanation, inference to the best explanation, etc. - but does not abandon phenomenology for all that, allowing it to be simply absorbed into empirical explanation or other forms of philosophical analysis without remainder.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper studies how constraints on the timing of actions affect equilibrium in intertemporal coordination problems. The model exhibits a unique symmetric equilibrium in cut-o¤ strategies. The risk-dominant action of the underlying one-shot game is selected when the option to delay effort is commensurate with the option to wait longer for others' actions. The possibility of waiting longer for the actions of others enhances coordination, but the option of delaying one s actions can induce severe coordination failures: if agents are very patient, they might get arbitrarily low expected payoffs even in cases where coordination would yield arbitrarily large returns.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A dynamical systems approach to the study of locomotor intralimb coordination in those with hemiparesis led to an examination of the utility of the shank-thigh relative phase (RP) as a collective variable and the identification of potential constraints that may shape this coordination. Eighteen non-disabled individuals formed three groups matched to the age and gender of six participants with chronic right hemiparesis. The three groups differed in the constraints imposed on their walking: (1) walking at their preferred walking speed; (2) walking as slowly as those with hemiparesis; and, (3) walking slowly with a right ankle-foot orthosis (AFO). The results revealed an asymmetry in intralimb coordination between the unaffected and affected leg of those with hemiparesis localized to the latter third of the gait cycle when the limb is advanced from the end of stance to the reestablishment of a new stance. Walking slowly with or without an AFO resulted in no measureable effect in the non-disabled, but accounts for 22% of the variance in the intralimb coordination of the hemiplegic's affected limb and 16% in the unaffected limb. The AFO offered little additional contribution. These results derive from shank-thigh RP that is shown to provide more information about intralimb coordination than knee angle displacement. Implications for these results and the use of RP for rehabilitation are discussed. (C) 2000 Elsevier B.V. B.V. All rights reserved. PsycINFO classification. 3297. 2330.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this thesis was to investigate the respective contribution of prior information and sensorimotor constraints to action understanding, and to estimate their consequences on the evolution of human social learning. Even though a huge amount of literature is dedicated to the study of action understanding and its role in social learning, these issues are still largely debated. Here, I critically describe two main perspectives. The first perspective interprets faithful social learning as an outcome of a fine-grained representation of others’ actions and intentions that requires sophisticated socio-cognitive skills. In contrast, the second perspective highlights the role of simpler decision heuristics, the recruitment of which is determined by individual and ecological constraints. The present thesis aims to show, through four experimental works, that these two contributions are not mutually exclusive. A first study investigates the role of the inferior frontal cortex (IFC), the anterior intraparietal area (AIP) and the primary somatosensory cortex (S1) in the recognition of other people’s actions, using a transcranial magnetic stimulation adaptation paradigm (TMSA). The second work studies whether, and how, higher-order and lower-order prior information (acquired from the probabilistic sampling of past events vs. derived from an estimation of biomechanical constraints of observed actions) interacts during the prediction of other people’s intentions. Using a single-pulse TMS procedure, the third study investigates whether the interaction between these two classes of priors modulates the motor system activity. The fourth study tests the extent to which behavioral and ecological constraints influence the emergence of faithful social learning strategies at a population level. The collected data contribute to elucidate how higher-order and lower-order prior expectations interact during action prediction, and clarify the neural mechanisms underlying such interaction. Finally, these works provide/open promising perspectives for a better understanding of social learning, with possible extensions to animal models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Active head turns to the left and right have recently been shown to influence numerical cognition by shifting attention along the mental number line. In the present study, we found that passive whole-body motion influences numerical cognition. In a random-number generation task (Experiment 1), leftward and downward displacement of participants facilitated small number generation, whereas rightward and upward displacement facilitated the generation of large numbers. Influences of leftward and rightward motion were also found for the processing of auditorily presented numbers in a magnitude-judgment task (Experiment 2). Additionally, we investigated the reverse effect of the number-space association (Experiment 3). Participants were displaced leftward or rightward and asked to detect motion direction as fast as possible while small or large numbers were auditorily presented. When motion detection was difficult, leftward motion was detected faster when hearing small number and rightward motion when hearing large number. We provide new evidence that bottom-up vestibular activation is sufficient to interact with the higher-order spatial representation underlying numerical cognition. The results show that action planning or motor activity is not necessary to influence spatial attention. Moreover, our results suggest that self-motion perception and numerical cognition can mutually influence each other.