944 resultados para Peanut seeds
Resumo:
In order to investigate the biological effects of heavy ion radiation at low closes and the different radiosensitivities of growing and non-growing plants. rice at different lift stages (dry seed, wet seed and seedling) were exposed to carbon ions at closes of 0 02, 0.2, 2 and 20 Gy. Radiobiological effects on survival, root growth and mitotic activity, as well as the induction of chromosome aberrations in root meristem. were observed The results show that radiation exposure induces a stimulatory response at lower close and an inhibitory response at higher dose on the mitotic activity of wet seeds and seedlings Cytogenetic damages are induced in both seeds and seedlings by carbon ion radiation at doses as low as 0.02 Gy Compared with seedlings. seeds are more resistant to the lethal damage and the growth rate damage by high doses of carbon ions, but are more sensitive to cytogenetic damage by low closes of irradiation Different types of radiation induced chromosome aberrations are observed between seeds and seedlings. Based on these results, the relationships between low close heavy ion-induced biological effects and the biological materials are discussed.
Resumo:
A pre-column derivatization method for the sensitive determination of amino acids and peptides using the tagging reagent 1,2-benzo-3,4dihydrocarbazole-9-ethyl chloroformate (BCEOC) followed by high-performance liquid chromatography with fluorescence detection has been developed. Identification of derivatives was carried out by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS/MS). The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent was replaced by 1,2-benzo-3,4-dihydrocarbazole functional group, which resulted in a sensitive fluorescence derivatizing reagent BCEOC. BCEOC can easily and quickly label peptides and amino acids. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography. The derivatives showed an intense protonated molecular ion corresponding m/z (M + H)(+) under electrospray ionization (ESI) positive-ion mode with an exception being Tyr detected at negative mode. The collision-induced dissociation of protonated molecular ion formed a product at m/z 246.2 corresponding to the cleavage of C-O bond of BCEOC molecule. Studies on derivatization demonstrate excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% are observed with a 3-4-fold molar reagent excess. Derivatives exhibit strong fluorescence and extracted detzvatization solution with n-hexane/ethyl acetate (10:1, v/v) allows for the direct injection with no significant interference from the major fluorescent reagent degradation by-products, such as 1,2-benzo-3,4-dihydrocarbazole-9-ethanol (BDC-OH) (a major by-product), mono- 1,2-benzo-3,4-dihydrocarbazole-9-ethyl carbonate (BCEOC-OH) and bis-(1,2-benzo-3,4-dihydrocarbazole-9-ethyl) carbonate (BCEOC)(2). In addition, the detection responses for BCEOC derivatives are compared to those obtained with previously synthesized 2-(9-carbazole)-ethyl chloroformate (CEOC) in our laboratory. The ratios AC(BCEOC)/AC(CEOC) = 2.05-6.51 for fluorescence responses are observed (here, AC is relative fluorescence response). Separation of the derivatized peptides and amino acids had been optimized on Hypersil BDS C-18 column. Detection limits were calculated from 1.0 pmol injection at a signal-to-noise ratio of 3, and were 6.3 (Lys)-177.6 (His) fmol. The mean interday accuracy ranged from 92 to 106% for fluorescence detection with mean %CV < 7.5. The mean interday precision for all standards was < 10% of the expected concentration. Excellent linear responses were observed with coefficients of > 0.9999. Good compositional data could be obtained from the analysis of derivatized protein hydrolysates containing as little as 50.5 ng of sample. Therefore, the facile BCEOC derivatization coupled with mass spectrometry allowed the development of a highly sensitive and specific method for the quantitative analysis of trace levels of amino acids and peptides from biological and natural environmental samples. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Background: The eliciting dose (ED) for a peanut allergic reaction in 5% of the peanut allergic population, the ED05, is 1.5 mg of peanut protein. This ED05 was derived from oral food challenges (OFC) that use graded, incremental doses administered at fixed time intervals. Individual patients’ threshold doses were used to generate population dose-distribution curves using probability distributions from which the ED05 was then determined. It is important to clinically validate that this dose is predictive of the allergenic response in a further unselected group of peanut-allergic individuals. Methods/Aims: This is a multi-centre study involving three national level referral and teaching centres. (Cork University Hospital, Ireland, Royal Children’s Hospital Melbourne, Australia and Massachusetts General Hospital, Boston, U.S.A.) The study is now in process and will continue to run until all centres have recruited 125 participates in each respective centre. A total of 375 participants, aged 1–18 years will be recruited during routine Allergy appointments in the centres. The aim is to assess the precision of the predicted ED05 using a single dose (6 mg peanut = 1.5 mg of peanut protein) in the form of a cookie. Validated Food Allergy related Quality of Life Questionnaires-(FAQLQ) will be self-administered prior to OFC and 1 month after challenge to assess the impact of a single dose OFC on FAQL. Serological and cell based in vitro studies will be performed. Conclusion: The validation of the ED05 threshold for allergic reactions in peanut allergic subjects has potential value for public health measures. The single dose OFC, based upon the statistical dose-distribution analysis of past challenge trials, promises an efficient approach to identify the most highly sensitive patients within any given food-allergic population.
Resumo:
Currently, the sole strategy for managing food hypersensitivity involves strict avoidance of the trigger. Several alternate strategies for the treatment of food allergies are currently under study. Also being explored is the process of eliminating allergenic proteins from crop plants. Legumes are a rich source of protein and are an essential component of the human diet. Unfortunately, legumes, including soybean and peanut, are also common sources of food allergens. Four protein families and superfamilies account for the majority of legume allergens, which include storage proteins of seeds (cupins and prolamins), profilins, and the larger group of pathogenesis-related proteins. Two strategies have been used to produce hypoallergenic legume crops: (1) germplasm lines are screened for the absence or reduced content of specific allergenic proteins and (2) genetic transformation is used to silence native genes encoding allergenic proteins. Both approaches have been successful in producing cultivars of soybeans and peanuts with reduced allergenic proteins. However, it is unknown whether the cultivars are actually hypoallergenic to those with sensitivity. This review describes efforts to produce hypoallergenic cultivars of soybean and peanut and discusses the challenges that need to be overcome before such products could be available in the marketplace.
Resumo:
Asthma is a major risk cofactor for anaphylactic deaths in children with peanut allergy. Peanut allergy is generally thought to be a lifelong condition, but some children outgrow their coexistent asthma. It has recently been shown that children who have ‘outgrown’ their asthma symptoms may have ongoing eosinophilic airways inflammation. The need for regular inhaled corticosteroid treatment in peanut allergic children and adolescents who have outgrown their asthma is however unclear. The aims of our study were to look at fractional exhaled nitric oxide levels (FeNO), as a non-invasive marker of eosinophilic airways inflammation, in peanut allergic children and assess whether children with outgrown asthma had elevated levels. Children with peanut allergy were recruited at two pediatric allergy clinics in Belfast, UK. Exhaled nitric oxide levels (FeNO) were measured using the Niox Mino in all children. Of the 101 peanut allergic children who consented for enrolment in the study, 94 were successfully able to use the NIOX Mino. Age range was 4–15 yr (median 10 yr); 61% were boys. Thirty (32%) had never wheezed, 37 (39%) had current treated asthma, 20 (21%) had at least 1 wheezing episode within the last year but were not taking any regular asthma medication (wheeze no treatment), and 7 (7%) had outgrown asthma. All children with outgrown asthma had elevated levels of FeNO (>35 ppb), and 75% of children defined as ‘wheeze no treatment’ had elevated FeNO levels (>35 ppb). Outgrown asthma and children defined as ‘wheeze no treatment’ had higher levels of FeNO than those with no history of wheeze or current treated asthma (p = 0.003). In children with peanut allergy, we found that those who had outgrown asthma had elevated FeNO levels in keeping with ongoing eosinophilic airways inflammation.
Evaluation of the feed value for ruminants of newly developed black and yellow type of canola seeds.