902 resultados para Peak power


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Direct methanol fuel cells (DMFCs) consisting of multi-layer electrodes provide higher performance than those with the traditional electrode. The new electrode structure includes a hydrophilic thin film and a traditional catalyst layer. A decal transfer method was used to apply the thin film to the Nafion(R) membrane. Results show that the performance of a cell with the hydrophilic thin film is obviously enhanced. A cell with the optimal thin film electrode structure operating at I M CH3OH, 2 atm oxygen and 90degreesC yields a current density of 100 mA/cm(2) at 0.53 V cell voltage. The peak power density is 120 mW/cm(2). The performance stability of a cell in a short-term life operation was also increased when the hydrophilic thin film was employed. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel polytetrafluoroethylene (PTFE)-reinforced multilayer self-humidifying composite membrane is developed. The membrane is composed of Nafion-impregnated porous PTFE composite as the central layer and nanosized SiO2 supported Pt catalyst imbedded into Nafion as the two side layers. The proton exchange membrane (PEM) fuel cells employing the self-humidifying membrane (20 mu m thick) under dry H-2/O-2 gave a peak power density of 0.95 W/cm(2) and an open-circuit voltage of 1.032 V. The good membrane performance is attributed to hygroscopic Pt-SiO2 catalyst at the two side layers, which results in enhanced anode side self-humidification function and decreased cathode polarization. (c) 2005 The Electrochemical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study, a method based on transmission-line mode for a porous electrode was used to measure the ionic resistance of the anode catalyst layer under in situ fuel cell operation condition. The influence of Nafion content and catalyst loading in the anode catalyst layer on the methanol electro-oxidation and direct methanol fuel cell (DMFC) performance based on unsupported Pt-Ru black was investigated by using the AC impedance method. The optimal Nafion content was found to be 15 wt% at 75 degrees C. The optimal Pt-Ru loading is related to the operating temperature, for example, about 2.0 mg/cm(2) for 75-90 degrees C, 3.0 mg/cm2 for 50 degrees C. Over these values, the cell performance decreased due to the increases in ohmic and mass transfer resistances. It was found that the peak power density obtained was 217 mW/cm(2) with optimal catalyst and Nafion loading at 75 degrees C using oxygen. (c) 2005 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to assess the appearance of cardiac troponins (cTnI and/or cTnT) after a short bout (30 s) of ‘all-out’ intense exercise and to determine the stability of any exercise-related cTnI release in response to repeated bouts of high intensity exercise separated by 7 days recovery. Eighteen apparently healthy, physically active, male university students completed two all-out 30 s cycle sprint, separated by 7 days. cTnI, blood lactate and catecholamine concentrations were measured before, immediately after and 24 h after each bout. Cycle performance, heart rate and blood pressure responses to exercise were also recorded. Cycle performance was modestly elevated in the second trial [6·5% increase in peak power output (PPO)]; there was no difference in the cardiovascular, lactate or catecholamine response to the two cycle trials. cTnI was not significantly elevated from baseline through recovery (Trial 1: 0·06 ± 0·04 ng ml−1, 0·05 ± 0·04 ng ml−1, 0·03 ± 0·02 ng ml−1; Trial 2: 0·02 ± 0·04 ng ml−1, 0·04 ± 0·03 ng ml−1, 0·05 ± 0·06 ng ml−1) in either trial. Very small within subject changes were not significantly correlated between the two trials (r = 0·06; P>0·05). Subsequently, short duration, high intensity exercise does not elicit a clinically relevant response in cTnI and any small alterations likely reflect the underlying biological variability of cTnI measurement within the participants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thesis initially gives an overview of the wave industry and the current state of some of the leading technologies as well as the energy storage systems that are inherently part of the power take-off mechanism. The benefits of electrical energy storage systems for wave energy converters are then outlined as well as the key parameters required from them. The options for storage systems are investigated and the reasons for examining supercapacitors and lithium-ion batteries in more detail are shown. The thesis then focusses on a particular type of offshore wave energy converter in its analysis, the backward bent duct buoy employing a Wells turbine. Variable speed strategies from the research literature which make use of the energy stored in the turbine inertia are examined for this system, and based on this analysis an appropriate scheme is selected. A supercapacitor power smoothing approach is presented in conjunction with the variable speed strategy. As long component lifetime is a requirement for offshore wave energy converters, a computer-controlled test rig has been built to validate supercapacitor lifetimes to manufacturer’s specifications. The test rig is also utilised to determine the effect of temperature on supercapacitors, and determine application lifetime. Cycle testing is carried out on individual supercapacitors at room temperature, and also at rated temperature utilising a thermal chamber and equipment programmed through the general purpose interface bus by Matlab. Application testing is carried out using time-compressed scaled-power profiles from the model to allow a comparison of lifetime degradation. Further applications of supercapacitors in offshore wave energy converters are then explored. These include start-up of the non-self-starting Wells turbine, and low-voltage ride-through examined to the limits specified in the Irish grid code for wind turbines. These applications are investigated with a more complete model of the system that includes a detailed back-to-back converter coupling a permanent magnet synchronous generator to the grid. Supercapacitors have been utilised in combination with battery systems for many applications to aid with peak power requirements and have been shown to improve the performance of these energy storage systems. The design, implementation, and construction of coupling a 5 kW h lithium-ion battery to a microgrid are described. The high voltage battery employed a continuous power rating of 10 kW and was designed for the future EV market with a controller area network interface. This build gives a general insight to some of the engineering, planning, safety, and cost requirements of implementing a high power energy storage system near or on an offshore device for interface to a microgrid or grid.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the observation with the North Alabama Lightning Mapping Array (LMA) related to a terrestrial gamma-ray flash (TGF) detected by RHESSI on 26 July 2008. The LMA data explicitly show the TGF was produced during the initial development of a compact intracloud (IC) lightning flash between a negative charge region centered at about 8.5 km above sea level (-22C temperature level) a higher positive region centered at 13 km, both confined to the convective core of an isolated storm in close proximity to the RHESSI footprint. After the occurrence of an LMA source with a high peak power (26 kW), the initial lightning evolution caused an unusually large IC current moment that became detectable 2 ms after the first LMA source and increased for another 2 ms, during which the burst of gamma-rays was produced. This slowly building current moment was most likely associated with the upward leader progression, which produced an uncommonly large IC charge moment change (+90 Ckm) in 3 ms while being punctuated by a sequence of fast discharge. These observations suggest that the leader development may be involved in the TGF production. Copyright © 2010 by the American Geophysical Union.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Supercontinuum generation is investigated experimentally and numerically in a highly nonlinear indexguiding photonic crystal optical fiber in a regime in which self-phase modulation of the pump wave makes a negligible contribution to spectral broadening. An ultrabroadband octave-spanning white-light continuum is generated with 60-ps pump pulses of subkilowatt peak power. The primary mechanism of spectral broadening is identified as the combined action of stimulated Raman scattering and parametric four-wave mixing. The observation of a strong anti-Stokes Raman component reveals the importance of the coupling between stimulated Raman scattering and parametric four-wave mixing in highly nonlinear photonic crystal fibers and also indicates that non-phase-matched processes contribute to the continuum. Additionally, the pump input polarization affects the generated continuum through the influence of polarization modulational instability. The experimental results are in good agreement with detailed numerical simulations. These findings demonstrate the importance of index-guiding photonic crystal fibers for the design of picosecond and nanosecond supercontinuum light sources. © 2002 Optical Society of America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The generation of a spatially single-mode white-light supercontinuum has been observed in a photonic crystal fiber pumped with 60-ps pulses of subkilowatt peak power. The spectral broadening is identified as being due to the combined action of stimulated Raman scattering and parametric four-wave-mixing generation, with a negligible contribution from the self-phase modulation of the pump pulses. The experimental results are in good agreement with detailed numerical simulations. These findings demonstrate that ultrafast femtosecond pulses are not needed for efficient supercontinuum generation in photonic crystal fibers. © 2001 Optical Society of America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The phase coherence of supercontinuum generation in microstructure fiber is quantified by performing a Young's type interference experiment between independently generated supercontinua from two separate fiber segments. Analysis of the resulting interferogram yields the wavelength dependence of the magnitude of the mutual degree of coherence, and a comparison of experimental results with numerical simulations suggests that the primary source of coherence degradation is the technical noise-induced fluctuations in the injected peak power. © 2003 Optical Society of America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports on the design methodology and experimental characterization of the inverse Class-E power amplifier. A demonstration amplifier with excellent second and third harmonic-suppression levels has been designed, constructed, and measured. The circuit fabricated using a 1.2-min gate-width GaAs MESFET is shown to be able to deliver 22-dBm output power at 2.3 GHz. The amplifier achieves a peak power-added efficiency of 64 % and drain efficiency of 69 %, and exhibits 11.6 dB power gain when operated from a 3-V supply voltage. Comparisons of simulated and measured results are given with good agreement between them being obtained. Experimental results are presented for the amplifier's response to Gaussian minimum shift keying modulation, where a peak error vector modulation value of 0.6% is measured.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have tested soft X-ray lasing in neon-like germanium with cylindrical targets where wave guiding and plasma confinement may affect lasing. An intense soft X-ray laser beam of 0.05 MW peak power and a narrow beam divergence (8 mrad) was produced at 23.6 nm with a 4 cm long straight cylindrical target of 0.72 mm inner diameter. Bending the cylindrical target to form a toroidal shape increased the lasing intensity by a factor of 3 accompanied with reduction of the beam divergence from 8 to 6 mrad.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reflecting light from a mirror moving close to the speed of light has been envisioned as a route towards producing bright X-ray pulses since Einstein's seminal work on special relativity. For an ideal relativistic mirror, the peak power of the reflected radiation can substantially exceed that of the incident radiation due to the increase in photon energy and accompanying temporal compression. Here we demonstrate for the first time that dense relativistic electron mirrors can be created from the interaction of a high-intensity laser pulse with a freestanding, nanometre-scale thin foil. The mirror structures are shown to shift the frequency of a counter-propagating laser pulse coherently from the infrared to the extreme ultraviolet with an efficiency >10 4 times higher than in the case of incoherent scattering. Our results elucidate the reflection process of laser-generated electron mirrors and give clear guidance for future developments of a relativistic mirror structure. 

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel tubular cathode for the direct methanol fuel cell (DMFC) is proposed, based on a tubular titanium mesh. A dip-coating method has been developed for its fabrication. The tubular cathode is composed of titanium mesh, a cathode diffusion layer, a catalyst layer, and a recast Nafion® film. The titanium mesh is present at the inner circumference of the diffusion layer, while the recast Nafion® film is at the outer circumference of the catalyst layer. A DMFC single cell with a 3.5 mgPt cm tubular cathode was able to perform as well, in terms of power density, as a conventional planar DMFC. A peak power density of 9 mW cm was reached under atmospheric air at 25 °C. © 2006 WILEY-VCH Verlag GmbH & Co. KGaA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a multipair decode-and-forward relay channel, where multiple sources transmit simultaneously their signals to multiple destinations with the help of a full-duplex relay station. We assume that the relay station is equipped with massive arrays, while all sources and destinations have a single antenna. The relay station uses channel estimates obtained from received pilots and zero-forcing (ZF) or maximum-ratio combining/maximum-ratio transmission (MRC/MRT) to process the signals. To reduce significantly the loop interference effect, we propose two techniques: i) using a massive receive antenna array; or ii) using a massive transmit antenna array together with very low transmit power at the relay station. We derive an exact achievable rate in closed-form for MRC/MRT processing and an analytical approximation of the achievable rate for ZF processing. This approximation is very tight, especially for large number of relay station antennas. These closed-form expressions enable us to determine the regions where the full-duplex mode outperforms the half-duplex mode, as well as, to design an optimal power allocation scheme. This optimal power allocation scheme aims to maximize the energy efficiency for a given sum spectral efficiency and under peak power constraints at the relay station and sources. Numerical results verify the effectiveness of the optimal power allocation scheme. Furthermore, we show that, by doubling the number of transmit/receive antennas at the relay station, the transmit power of each source and of the relay station can be reduced by 1.5dB if the pilot power is equal to the signal power, and by 3dB if the pilot power is kept fixed, while maintaining a given quality-of-service.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we consider charging strategies that mitigate the impact of domestic charging of EVs on low-voltage distribution networks and which seek to reduce peak power by responding to time-ofday pricing. The strategies are based on the distributed Additive Increase and Multiplicative Decrease (AIMD) charging algorithms proposed in [5]. The strategies are evaluated using simulations conducted on a custom OpenDSS-Matlab platform for a typical low voltage residential feeder network. Results show that by using AIMD based smart charging 50% EV penetration can be accommodated on our test network, compared to only 10% with uncontrolled charging, without needing to reinforce existing network infrastructure. © Springer-Verlag Berlin Heidelberg 2013.