974 resultados para Particle Number Concentration
Resumo:
Ambient sampling for the Pittsburgh Air Quality Study (PAQS) was conducted from July 2001 to September 2002. The study was designed (1) to characterize particulate matter (PM) by examination of size, surface area, and volume distribution, chemical composition as a function of size and on a single particle basis, morphology, and temporal and spatial variability in the Pittsburgh region; (2) to quantify the impact of the various sources (transportation, power plants, biogenic sources, etc.) on the aerosol concentrations in the area; and (3) to develop and evaluate the next generation of atmospheric aerosol monitoring and modeling techniques. The PAQS objectives, study design, site descriptions and routine and intensive measurements are presented. Special study days are highlighted, including those associated with elevated concentrations of daily average PM2.5 mass. Monthly average and diurnal patterns in aerosol number concentration, and aerosol nitrate, sulfate, elemental carbon, and organic carbon concentrations, light scattering as well as gas-phase ozone, nitrogen oxides, and carbon monoxide are discussed with emphasis on the processes affecting them. Preliminary findings reveal day-to-day variability in aerosol mass and composition, but consistencies in seasonal average diurnal profiles and concentrations. For example, the seasonal average variations in the diurnal PM2.5 mass were predominately driven by the sulfate component. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
The spatial variability of aerosol number and mass along roads was determined in different regions (urban, rural and coastal-marine) of the Netherlands. A condensation particle counter (CPC) and an optical aerosol spectrometer (LAS-X) were installed in a van along with a global positioning system (GPS). Concentrations were measured with high-time resolutions while driving allowing investigations not possible with stationary equipment. In particular, this approach proves to be useful to identify those locations where numbers and mass attain high levels ('hot spots'). In general, concentrations of number and mass of particulate matter increase along with the degree of urbanisation, with number concentration being the more sensitive indicator. The lowest particle numbers and PM1-concentrations are encountered in a coastal and rural area: <5000cm-3 and 6μgm-3, respectively. The presence of sea-salt material along the North-Sea coast enhances PM>1-concentrations compared to inland levels. High-particle numbers are encountered on motorways correlating with traffic intensity; the largest average number concentration is measured on the ring motorway around Amsterdam: about 160000cm-3 (traffic intensity 100000vehday-1). Peak values occur in tunnels where numbers exceed 106cm-3. Enhanced PM1 levels (i.e. larger than 9μgm-3) exist on motorways, major traffic roads and in tunnels. The concentrations of PM>1 appear rather uniformly distributed (below 6μgm-3 for most observations). On the urban scale, (large) spatial variations in concentration can be explained by varying intensities of traffic and driving patterns. The highest particle numbers are measured while being in traffic congestions or when behind a heavy diesel-driven vehicle (up to 600×103cm-3). Relatively high numbers are observed during the passages of crossings and, at a decreasing rate, on main roads with much traffic, quiet streets and residential areas with limited traffic. The number concentration exhibits a larger variability than mass: the mass concentration on city roads with much traffic is 12% higher than in a residential area at the edge of the same city while the number of particles changes by a factor of two (due to the presence of the ultrafine particles (aerodynamic diameter <100nm). It is further indicated that people residing at some 100m downwind a major traffic source are exposed to (still) 40% more particles than those living in the urban background areas. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
Ice clouds are an important yet largely unvalidated component of weather forecasting and climate models, but radar offers the potential to provide the necessary data to evaluate them. First in this paper, coordinated aircraft in situ measurements and scans by a 3-GHz radar are presented, demonstrating that, for stratiform midlatitude ice clouds, radar reflectivity in the Rayleigh-scattering regime may be reliably calculated from aircraft size spectra if the "Brown and Francis" mass-size relationship is used. The comparisons spanned radar reflectivity values from -15 to +20 dBZ, ice water contents (IWCs) from 0.01 to 0.4 g m(-3), and median volumetric diameters between 0.2 and 3 mm. In mixed-phase conditions the agreement is much poorer because of the higher-density ice particles present. A large midlatitude aircraft dataset is then used to derive expressions that relate radar reflectivity and temperature to ice water content and visible extinction coefficient. The analysis is an advance over previous work in several ways: the retrievals vary smoothly with both input parameters, different relationships are derived for the common radar frequencies of 3, 35, and 94 GHz, and the problem of retrieving the long-term mean and the horizontal variance of ice cloud parameters is considered separately. It is shown that the dependence on temperature arises because of the temperature dependence of the number concentration "intercept parameter" rather than mean particle size. A comparison is presented of ice water content derived from scanning 3-GHz radar with the values held in the Met Office mesoscale forecast model, for eight precipitating cases spanning 39 h over Southern England. It is found that the model predicted mean I WC to within 10% of the observations at temperatures between -30 degrees and - 10 degrees C but tended to underestimate it by around a factor of 2 at colder temperatures.
Resumo:
A predominance of small, dense low-density lipoprotein (LDL) is a major component of an atherogenic lipoprotein phenotype, and a common, but modifiable, source of increased risk for coronary heart disease in the free-living population. While much of the atherogenicity of small, dense LDL is known to arise from its structural properties, the extent to which an increase in the number of small, dense LDL particles (hyper-apoprotein B) contributes to this risk of coronary heart disease is currently unknown. This study reports a method for the recruitment of free-living individuals with an atherogenic lipoprotein phenotype for a fish-oil intervention trial, and critically evaluates the relationship between LDL particle number and the predominance of small, dense LDL. In this group, volunteers were selected through local general practices on the basis of a moderately raised plasma triacylglycerol (triglyceride) level (>1.5 mmol/l) and a low concentration of high-density-lipoprotein cholesterol (<1.1 mmol/l). The screening of LDL subclasses revealed a predominance of small, dense LDL (LDL subclass pattern B) in 62% of the cohort. As expected, subjects with LDL subclass pattern B were characterized by higher plasma triacylglycerol and lower high-density lipoprotein cholesterol (<1.1 mmol/l) levels and, less predictably, by lower LDL cholesterol and apoprotein B levels (P<0.05; LDL subclass A compared with subclass B). While hyper-apoprotein B was detected in only five subjects, the relative percentage of small, dense LDL-III in subjects with subclass B showed an inverse relationship with LDL apoprotein B (r=-0.57; P<0.001), identifying a subset of individuals with plasma triacylglycerol above 2.5 mmol/l and a low concentration of LDL almost exclusively in a small and dense form. These findings indicate that a predominance of small, dense LDL and hyper-apoprotein B do not always co-exist in free-living groups. Moreover, if coronary risk increases with increasing LDL particle number, these results imply that the risk arising from a predominance of small, dense LDL may actually be reduced in certain cases when plasma triacylglycerol exceeds 2.5 mmol/l.
Resumo:
Simultaneous observations of cloud microphysical properties were obtained by in-situ aircraft measurements and ground based Radar/Lidar. Widespread mid-level stratus cloud was present below a temperature inversion (~5 °C magnitude) at 3.6 km altitude. Localised convection (peak updraft 1.5 m s−1) was observed 20 km west of the Radar station. This was associated with convergence at 2.5 km altitude. The convection was unable to penetrate the inversion capping the mid-level stratus.
The mid-level stratus cloud was vertically thin (~400 m), horizontally extensive (covering 100 s of km) and persisted for more than 24 h. The cloud consisted of supercooled water droplets and small concentrations of large (~1 mm) stellar/plate like ice which slowly precipitated out. This ice was nucleated at temperatures greater than −12.2 °C and less than −10.0 °C, (cloud top and cloud base temperatures, respectively). No ice seeding from above the cloud layer was observed. This ice was formed by primary nucleation, either through the entrainment of efficient ice nuclei from above/below cloud, or by the slow stochastic activation of immersion freezing ice nuclei contained within the supercooled drops. Above cloud top significant concentrations of sub-micron aerosol were observed and consisted of a mixture of sulphate and carbonaceous material, a potential source of ice nuclei. Particle number concentrations (in the size range 0.1
Resumo:
In situ high resolution aircraft measurements of cloud microphysical properties were made in coordination with ground based remote sensing observations of a line of small cumulus clouds, using Radar and Lidar, as part of the Aerosol Properties, PRocesses And InfluenceS on the Earth's climate (APPRAISE) project. A narrow but extensive line (~100 km long) of shallow convective clouds over the southern UK was studied. Cloud top temperatures were observed to be higher than −8 °C, but the clouds were seen to consist of supercooled droplets and varying concentrations of ice particles. No ice particles were observed to be falling into the cloud tops from above. Current parameterisations of ice nuclei (IN) numbers predict too few particles will be active as ice nuclei to account for ice particle concentrations at the observed, near cloud top, temperatures (−7.5 °C). The role of mineral dust particles, consistent with concentrations observed near the surface, acting as high temperature IN is considered important in this case. It was found that very high concentrations of ice particles (up to 100 L−1) could be produced by secondary ice particle production providing the observed small amount of primary ice (about 0.01 L−1) was present to initiate it. This emphasises the need to understand primary ice formation in slightly supercooled clouds. It is shown using simple calculations that the Hallett-Mossop process (HM) is the likely source of the secondary ice. Model simulations of the case study were performed with the Aerosol Cloud and Precipitation Interactions Model (ACPIM). These parcel model investigations confirmed the HM process to be a very important mechanism for producing the observed high ice concentrations. A key step in generating the high concentrations was the process of collision and coalescence of rain drops, which once formed fell rapidly through the cloud, collecting ice particles which caused them to freeze and form instant large riming particles. The broadening of the droplet size-distribution by collision-coalescence was, therefore, a vital step in this process as this was required to generate the large number of ice crystals observed in the time available. Simulations were also performed with the WRF (Weather, Research and Forecasting) model. The results showed that while HM does act to increase the mass and number concentration of ice particles in these model simulations it was not found to be critical for the formation of precipitation. However, the WRF simulations produced a cloud top that was too cold and this, combined with the assumption of continual replenishing of ice nuclei removed by ice crystal formation, resulted in too many ice crystals forming by primary nucleation compared to the observations and parcel modelling.
Resumo:
New in-situ aircraft measurements of Saharan dust originating from Mali, Mauritania and Algeria taken during the Fennec 2011 aircraft campaign over a remote part of the Sahara Desert are presented. Size distributions extending to 300 μm are shown, representing measurements extending further into the coarse mode than previously published for airborne Saharan dust. A significant coarse mode was present in the size distribution measurements with effective diameter (deff) from 2.3 to 19.4 μm and coarse mode volume median diameter (dvc) from 5.8 to 45.3 μm. The mean size distribution had a larger relative proportion of coarse mode particles than previous aircraft measurements. The largest particles (with deff >12 μm, or dvc >25 μm) were only encountered within 1 km of the ground. Number concentration, mass loading and extinction coefficient showed inverse relationships to dust age since uplift. Dust particle size showed a weak exponential relationship to dust age. Two cases of freshly uplifted dust showed quite different characteristics of size distribution and number concentration. Single Scattering Albed (SSA) values at 550 nm calculated from the measured size distributions revealed high absorption ranging from 0.70 to 0.97 depending on the refractive index. SSA was found to be strongly related to deff. New instrumentation revealed that direct measurements, behind Rosemount inlets, overestimate SSA by up to 0.11 when deff is greater than 2 μm. This is caused by aircraft inlet inefficiencies and sampling losses. Previous measurements of SSA from aircraft measurements may also have been overestimates for this reason. Radiative transfer calculations indicate that the range of SSAs during Fennec 2011 can lead to underestimates in shortwave atmospheric heating rates by 2.0 to 3.0 times if the coarse mode is neglected. This will have an impact on Saharan atmospheric dynamics and circulation,which should be taken into account by numerical weather prediction and climate models.
Resumo:
Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multi-model-mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting that most of the individual global aerosol microphysics models are performing well, although the large model diversity indicates that some models are in poor agreement with the observations. Further work is required to better constrain size-resolved primary and secondary particle number sources, and an improved understanding of nucleation and growth (e.g. the role of nitrate and secondary organics) will improve the fidelity of simulated particle size distributions.
Resumo:
Field observations of new particle formation and the subsequent particle growth are typically only possible at a fixed measurement location, and hence do not follow the temporal evolution of an air parcel in a Lagrangian sense. Standard analysis for determining formation and growth rates requires that the time-dependent formation rate and growth rate of the particles are spatially invariant; air parcel advection means that the observed temporal evolution of the particle size distribution at a fixed measurement location may not represent the true evolution if there are spatial variations in the formation and growth rates. Here we present a zero-dimensional aerosol box model coupled with one-dimensional atmospheric flow to describe the impact of advection on the evolution of simulated new particle formation events. Wind speed, particle formation rates and growth rates are input parameters that can vary as a function of time and location, using wind speed to connect location to time. The output simulates measurements at a fixed location; formation and growth rates of the particle mode can then be calculated from the simulated observations at a stationary point for different scenarios and be compared with the ‘true’ input parameters. Hence, we can investigate how spatial variations in the formation and growth rates of new particles would appear in observations of particle number size distributions at a fixed measurement site. We show that the particle size distribution and growth rate at a fixed location is dependent on the formation and growth parameters upwind, even if local conditions do not vary. We also show that different input parameters used may result in very similar simulated measurements. Erroneous interpretation of observations in terms of particle formation and growth rates, and the time span and areal extent of new particle formation, is possible if the spatial effects are not accounted for.
Resumo:
A resistência e o mecanismo de corrosão das ligas de alumínio 2024, 7010, 7050 e 7475 foram estudados em solução de NaCl. Os efeitos do tratamento térmico nas ligas, concentração de oxigênio, pH, adição de oxi-ânions e temperatura do meio constituem algumas das variáveis estudadas. Primeiramente, procedeu-se à caracterização físicoquímica dos materiais através de análise química e metalográfica, mediante microscopia eletrônica de varredura e espectroscopia de energia dispersiva. As ligas 2024, 7010, 7050 e 7475 como recebidas, recozidas e envelhecidas, revelaram a existência de partículas ternárias e quaternárias, constituídas por Al:Cu:Fe e Mg ou Zn. Também foi observado um maior número de partículas pequenas de composição variável situando-se, preferencialmente, nos contornos dos grãos. Os resultados dos ensaios de corrosão em meios aerados e desaerados indicam que o cromato é efetivo como inibidor da corrosão localizada em ambas ligas e que o molibdato somente na liga 7050. O efeito inibidor do tungstato se revela em meio desaerado e é comparativamente menor daquele observado com os outros oxi-ânions. As análises quantitativas de superfície das ligas após os ensaios de imersão indicam que ainda na presença de inibidor, se pites foram nucleados, eles crescem.
Resumo:
As a part of the AMAZE-08 campaign during the wet season in the rainforest of central Amazonia, an ultraviolet aerodynamic particle sizer (UV-APS) was operated for continuous measurements of fluorescent biological aerosol particles (FBAP). In the coarse particle size range (> 1 mu m) the campaign median and quartiles of FBAP number and mass concentration were 7.3x10(4) m(-3) (4.0-13.2x10(4) m(-3)) and 0.72 mu g m(-3) (0.42-1.19 mu g m(-3)), respectively, accounting for 24% (11-41%) of total particle number and 47% (25-65%) of total particle mass. During the five-week campaign in February-March 2008 the concentration of coarse-mode Saharan dust particles was highly variable. In contrast, FBAP concentrations remained fairly constant over the course of weeks and had a consistent daily pattern, peaking several hours before sunrise, suggesting observed FBAP was dominated by nocturnal spore emission. This conclusion was supported by the consistent FBAP number size distribution peaking at 2.3 mu m, also attributed to fungal spores and mixed biological particles by scanning electron microscopy (SEM), light microscopy and biochemical staining. A second primary biological aerosol particle (PBAP) mode between 0.5 and 1.0 mu m was also observed by SEM, but exhibited little fluorescence and no true fungal staining. This mode may have consisted of single bacterial cells, brochosomes, various fragments of biological material, and small Chromalveolata (Chromista) spores. Particles liquid-coated with mixed organic-inorganic material constituted a large fraction of observations, and these coatings contained salts likely from primary biological origin. We provide key support for the suggestion that real-time laser-induce fluorescence (LIF) techniques using 355 nm excitation provide size-resolved concentrations of FBAP as a lower limit for the atmospheric abundance of biological particles in a pristine environment. We also show some limitations of using the instrument for ambient monitoring of weakly fluorescent particles < 2 mu m. Our measurements confirm that primary biological particles, fungal spores in particular, are an important fraction of supermicron aerosol in the Amazon and that may contribute significantly to hydrological cycling, especially when coated by mixed inorganic material.
Resumo:
The fine particles serving as cloud condensation nuclei in pristine Amazonian rainforest air consist mostly of secondary organic aerosol. Their origin is enigmatic, however, because new particle formation in the atmosphere is not observed. Here, we show that the growth of organic aerosol particles can be initiated by potassium-salt-rich particles emitted by biota in the rainforest. These particles act as seeds for the condensation of low- or semi-volatile organic compounds from the atmospheric gas phase or multiphase oxidation of isoprene and terpenes. Our findings suggest that the primary emission of biogenic salt particles directly influences the number concentration of cloud condensation nuclei and affects the microphysics of cloud formation and precipitation over the rainforest.
Resumo:
Aerosol particles are likely important contributors to our future climate. Further, during recent years, effects on human health arising from emissions of particulate material have gained increasing attention. In order to quantify the effect of aerosols on both climate and human health we need to better quantify the interplay between sources and sinks of aerosol particle number and mass on large spatial scales. So far long-term, regional observations of aerosol properties have been scarce, but argued necessary in order to bring the knowledge of regional and global distribution of aerosols further. In this context, regional studies of aerosol properties and aerosol dynamics are truly important areas of investigation. This thesis is devoted to investigations of aerosol number size distribution observations performed through the course of one year encompassing observational data from five stations covering an area from southern parts of Sweden up to northern parts of Finland. This thesis tries to give a description of aerosol size distribution dynamics from both a quantitative and qualitative point of view. The thesis focuses on properties and changes in aerosol size distribution as a function of location, season, source area, transport pathways and links to various meteorological conditions. The investigations performed in this thesis show that although the basic behaviour of the aerosol number size distribution in terms of seasonal and diurnal characteristics is similar at all stations in the measurement network, the aerosol over the Nordic countries is characterised by a typically sharp gradient in aerosol number and mass. This gradient is argued to derive from geographical locations of the stations in relation to the dominant sources and transport pathways. It is clear that the source area significantly determine the aerosol size distribution properties, but it is obvious that transport condition in terms of frequency of precipitation and cloudiness in some cases even more strongly control the evolution of the number size distribution. Aerosol dynamic processes under clear sky transport are however likewise argued to be highly important. Southerly transport of marine air and northerly transport of air from continental sources is studied in detail under clear sky conditions by performing a pseudo-Lagrangian box model evaluation of the two type cases. Results from both modelling and observations suggest that nucleation events contribute to integral number increase during southerly transport of comparably clean marine air, while number depletion dominates the evolution of the size distribution during northerly transport. This difference is largely explained by different concentration of pre-existing aerosol surface associated with the two type cases. Mass is found to be accumulated in many of the individual transport cases studied. This mass increase was argued to be controlled by emission of organic compounds from the boreal forest. This puts the boreal forest in a central position for estimates of aerosol forcing on a regional scale.
Resumo:
Aerosol particles and water vapour are two important constituents of the atmosphere. Their interaction, i.e. thecondensation of water vapour on particles, brings about the formation of cloud, fog, and raindrops, causing the water cycle on the earth, and being responsible for climate changes. Understanding the roles of water vapour and aerosol particles in this interaction has become an essential part of understanding the atmosphere. In this work, the heterogeneous nucleation on pre-existing aerosol particles by the condensation of water vapour in theflow of a capillary nozzle was investigated. Theoretical and numerical modelling as well as experiments on thiscondensation process were included. Based on reasonable results from the theoretical and numerical modelling, an idea of designing a new nozzle condensation nucleus counter (Nozzle-CNC), that is to utilise the capillary nozzle to create an expanding water saturated air flow, was then put forward and various experiments were carried out with this Nozzle-CNC under different experimental conditions. Firstly, the air stream in the long capillary nozzle with inner diameter of 1.0~mm was modelled as a steady, compressible and heat-conducting turbulence flow by CFX-FLOW3D computational program. An adiabatic and isentropic cooling in the nozzle was found. A supersaturation in the nozzle can be created if the inlet flow is water saturated, and its value depends principally on flow velocity or flow rate through the nozzle. Secondly, a particle condensational growth model in air stream was developed. An extended Mason's diffusion growthequation with size correction for particles beyond the continuum regime and with the correction for a certain particle Reynolds number in an accelerating state was given. The modelling results show the rapid condensational growth of aerosol particles, especially for fine size particles, in the nozzle stream, which, on the one hand, may induce evident `over-sizing' and `over-numbering' effects in aerosol measurements as nozzle designs are widely employed for producing accelerating and focused aerosol beams in aerosol instruments like optical particle counter (OPC) and aerodynamical particle sizer (APS). It can, on the other hand, be applied in constructing the Nozzle-CNC. Thirdly, based on the optimisation of theoretical and numerical results, the new Nozzle-CNC was built. Under various experimental conditions such as flow rate, ambient temperature, and the fraction of aerosol in the total flow, experiments with this instrument were carried out. An interesting exponential relation between the saturation in the nozzle and the number concentration of atmospheric nuclei, including hygroscopic nuclei (HN), cloud condensation nuclei (CCN), and traditionally measured atmospheric condensation nuclei (CN), was found. This relation differs from the relation for the number concentration of CCN obtained by other researchers. The minimum detectable size of this Nozzle-CNC is 0.04?m. Although further improvements are still needed, this Nozzle-CNC, in comparison with other CNCs, has severaladvantages such as no condensation delay as particles larger than the critical size grow simultaneously, low diffusion losses of particles, little water condensation at the inner wall of the instrument, and adjustable saturation --- therefore the wide counting region, as well as no calibration compared to non-water condensation substances.
Resumo:
It has been demonstrated that iodine does have an important influence on atmospheric chemistry, especially the formation of new particles and the enrichment of iodine in marine aerosols. It was pointed out that the most probable chemical species involved in the production or growth of these particles are iodine oxides, produced photochemically from biogenic halocarbon emissions and/or iodine emission from the sea surface. However, the iodine chemistry from gaseous to particulate phase in the coastal atmosphere and the chemical nature of the condensing iodine species are still not understood. A Tenax / Carbotrap adsorption sampling technique and a thermo-desorption / cryo-trap / GC-MS system has been further developed and improved for the volatile organic iodine species in the gas phase. Several iodo-hydrocarbons such as CH3I, C2H5I, CH2ICl, CH2IBr and CH2I2 etc., have been measured in samples from a calibration test gas source (standards), real air samples and samples from seaweeds / macro-algae emission experiments. A denuder sampling technique has been developed to characterise potential precursor compounds of coastal particle formation processes, such as molecular iodine in the gas phase. Starch, TMAH (TetraMethylAmmonium Hydroxide) and TBAH (TetraButylAmmonium Hydroxide) coated denuders were tested for their efficiencies to collect I2 at the inner surface, followed by a TMAH extraction and ICP/MS determination, adding tellurium as an internal standard. The developed method has been proved to be an effective, accurate and suitable process for I2 measurement in the field, with the estimated detection limit of ~0.10 ng∙L-1 for a sampling volume of 15 L. An H2O/TMAH-Extraction-ICP/MS method has been developed for the accurate and sensitive determination of iodine species in tropospheric aerosol particles. The particle samples were collected on cellulose-nitrate filters using conventional filter holders or on cellulose nitrate/tedlar-foils using a 5-stage Berner impactor for size-segregated particle analysis. The water soluble species as IO3- and I- were separated by anion exchanging process after water extraction. Non-water soluble species including iodine oxide and organic iodine were digested and extracted by TMAH. Afterwards the triple samples were analysed by ICP/MS. The detection limit for particulate iodine was determined to be 0.10~0.20 ng•m-3 for sampling volumes of 40~100 m3. The developed methods have been used in two field measurements in May 2002 and September 2003, at and around the Mace Head Atmospheric Research Station (MHARS) located at the west coast of Ireland. Elemental iodine as a precursor of the iodine chemistry in the coastal atmosphere, was determined in the gas phase at a seaweed hot-spot around the MHARS, showing I2 concentrations were in the range of 0~1.6 ng∙L-1 and indicating a positive correlation with the ozone concentration. A seaweed-chamber experiment performed at the field measurement station showed that the I2 emission rate from macro-algae was in the range of 0.019~0.022 ng•min-1•kg-1. During these experiments, nanometer-particle concentrations were obtained from the Scanning Mobility Particle Sizer (SMPS) measurements. Particle number concentrations were found to have a linear correlation with elemental iodine in the gas phase of the seaweeds chamber, showing that gaseous I2 is one of the important precursors of the new particle formation in the coastal atmosphere. Iodine contents in the particle phase were measured in both field campaigns at and around the field measurement station. Total iodine concentrations were found to be in the range of 1.0 ~ 21.0 ng∙m-3 in the PM2.5 samples. A significant correlation between the total iodine concentrations and the nanometer-particle number concentrations was observed. The particulate iodine species analysis indicated that iodide contents are usually higher than those of iodate in all samples, with ratios in the range of 2~5:1. It is possible that those water soluble iodine species are transferred through the sea-air interface into the particle phase. The ratio of water soluble (iodate + iodide) and non-water soluble species (probably iodine oxide and organic iodine compounds) was observed to be in the range of 1:1 to 1:2. It appears that higher concentrated non-water soluble species, as the products of the photolysis from the gas phase into the particle phase, can be obtained in those samples while the nucleation events occur. That supports the idea that iodine chemistry in the coastal boundary layer is linked with new particle formation events. Furthermore, artificial aerosol particles were formed from gaseous iodine sources (e.g. CH2I2) using a laboratory reaction-chamber experiment, in which the reaction constant of the CH2I2 photolysis was calculated to be based upon the first order reaction kinetic. The end products of iodine chemistry in the particle phase were identified and quantified.