802 resultados para Parkinson’s disease - motor deficits


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A doença de Parkinson (DP) é a segunda doença neurodegenerativa mais frequente no mundo, afetando 1-2% da população acima de 65 anos, caracterizada clinicamente por tremor em repouso, bradicinesia, instabilidade postural e rigidez muscular. Essas manifestações surgem devido à degeneração neuronal progressiva e à presença de inclusões proteicas ricas em α-sinucleína. A DP é decorrente da interação entre fatores ambientais e genéticos, e entre os fatores genéticos, variantes exônicas de transmissão dominante nos genes LRRK2 (leucine-rich repeat kinase 2), VPS35 (vacuolar protein sorting 35) e EIF4G1 (eukaryotic translation initiation factor 4-gamma 1) têm sido associadas à etiologia da doença. Entretanto, estudos sobre o efeito dessas variantes na população brasileira são raros ou inexistentes. Por essa razão, neste trabalho rastreamos mutações nos genes VPS35 (p.D620N; p.R524W), EIF4G1 (p.R1205H; p.A502V) e LRRK2 (p.G2019S) em uma amostra de 582 pacientes brasileiros com DP não aparentados e 329 indivíduos controles saudáveis. Além disso, conduzimos o primeiro estudo caso-controle para análise de variantes exônicas raras (p.Q1111H, p.T1410M, p.M1646T, p.S1761R, p.Y2189C) e comuns (p.N551K, p.R1398H, p.K1423K) no gene LRRK2 em um subgrupo de 329 pacientes brasileiros com DP, não aparentados, naturais da região sudeste. Esse subgrupo foi analisado e comparado com 222 indivíduos controles saudáveis a fim de verificar associações dessas variantes e a DP. Em relação às mutações dos genes VPS35 e EIF4G1, não foram encontradas alterações nos pacientes com DP. A mutação p.G2019S no gene LRRK2 foi encontrada em 15 probandos (2,6%), dos quais 9 são do sexo feminino (64,3%). O tremor em repouso foi observado em 47,36% dos pacientes com a mutação p.G2019S como primeiro sintoma motor. As análises das variantes raras no gene LRRK2 não revelaram qualquer associação estatisticamente significante. Entre as variantes comuns, a p.K1423K mostrou evidência de associação de risco com a DP (p<0,05) na estratificação contendo o grupo de indivíduos com história familiar da doença e para as variantes p.N551K e p.R1398H não foram observadas associações. A análise do haplótipo p.N551K-p.R1398H-p.K1423K revelou associação de proteção na amostra sudeste e na estratificação Rio de Janeiro (p<0,05). Esse haplótipo não está em desequilíbrio de ligação na amostra de 222 indivíduos controles brasileiros analisados (r2≤45). Os resultados obtidos neste estudo representam contribuições valiosas ao entendimento da relação entre as variantes genéticas estudadas e o risco de desenvolvimento da doença de Parkinson, principalmente no que se refere aos endofenótipos associados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuroinflammation is a key component of Parkinson’s disease (PD) neuropathology. Skewed microglia activation with pro-inflammatory prevailing over anti-inflammatory phenotypes may contribute to neurotoxicity via the production of cytokines and neurotoxic species. Therefore, microglia polarization has been proposed as a target for neuroprotection. The peroxisome proliferator-activated receptor gamma (PPARγ) is expressed in microglia and peripheral immune cells, where it is involved in macrophages polarization and in the control of inflammatory responses, by modulating gene transcription. Several studies have shown that PPARγ agonists are neuroprotective in experimental PD models in rodents and primates. however safety concerns have been raised about PPARγ agonists thiazolidinediones (TZD) currently available, prompting for the development of non-TZD compounds. Aim of this study was to characterize a novel PPARγ agonist non TZD, MDG548, for its potential neuroprotective effect in PD models and its immunomodulatory activity as the underlying mechanism of neuroprotection. The neuroprotective activity of MDG548 was assessed in vivo in the subacute MPTP model and in the chronic MPTP/probenecid (MPTPp) model of PD. MDG548 activity on microglia activation and phenotype was investigated in the substantia nigra pars compacta (SNc) via the evaluation of pro- (TNF-α and iNOS) and anti-inflammatory (CD206) molecules, with fluorescent immunohistochemistry. Moreover, cultured murine microglia MMGT12 were treated with MDG548 in association with the inflammagen LPS, pro- and anti-inflammatory molecules were measured in the medium by ELISA assay and phagocytosis was evaluated by fluorescent immunohistochemistry for CD68. MDG548 arrested dopaminergic cells degeneration in the SNc in both the subacute MPTP and the chronic MPTPp models of PD, and reverted MPTPp-induced motor impairment. Moreover, MDG548 reduced microglia activation, iNOS and TNF-α production, while induced CD206 in microglia. In cultured unstimulated microglia, LPS increased TNF-α production and CD68 expression, while decreased CD206 expression. MDG548 reverted LPS effect on TNF-α and CD206 restoring physiological levels, while strongly increased CD68 expression. Results suggest that the PPARγ agonist MDG548 is neuroprotective in experimental models of PD. MDG548 targets microglia polarization by correcting the imbalance between pro- over antiinflammatory molecules, offering a novel immunomodulatory approach to neuroprotection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of genetics in parkinsonism has been confirmed over the last decade with the identification of genetic variation in seven genes, which are causative in familial forms of the disorder. A number of pathogenic mutations have been identified in the latest gene LRRK2, with a Gly2019Ser amino acid substitution identified in two siblings and one patient with idiopathic Parkinson's disease from Ireland. The clinical features resemble the idiopathic variant with a tremor predominant clinical picture shared by the siblings, slow progression of symptoms, and no observation of cognitive disturbance in all. The family and the sporadic individual were apparently not related and originated from different regions of Ireland, although haplotype analysis does suggest they share a common founder. The influence of the G2019S substitution on protein function and disease phenotype has yet to be fully resolved, but its elucidation will undoubtedly further our understanding of the mechanisms underlying Parkinson's disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An abundance of genetic, histopathological, and biochemical evidence has implicated the neuronal protein, alpha-synuclein (alpha-syn) as a key player in the development of several neurodegenerative diseases, the so-called synucleinopathies, of which Parkinson's disease (PD) is the most prevalent. Development of disease appears to be linked to events that increase the intracellular concentration of alpha-syn or cause its chemical modification, either of which can accelerate the rate at which it forms aggregates. Examples of such events include increased copy number of genes, decreased rate of degradation via the proteasome or other proteases, or altered forms of alpha-syn, such as truncations, missense mutations, or chemical modifications by oxidative reactions. Aggregated forms of the protein, especially newly formed soluble aggregates, are toxic to cells, so that one therapeutic strategy would be to reduce the rate at which such oligomerization occurs. We have therefore designed several peptides and also identified small molecules that can inhibit alpha-syn oligomerization and toxicity in vitro. These compounds could serve as lead compounds for the design of new drugs for the treatment of PD and related disorders in the future.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondrial dysfunction has been proposed to play a role in the pathogenesis of Parkinson s disease (PD) Supportive of this hypothesis several genetic variants that regulate mitochondrial function and homeostasis have been described to alter PD susceptibility A recent report demonstrated association of a single nucleotide polymorphism in the mitochondrial translation initiation factor 3 (MTIF3) gene with PD risk The protein encoded by this nuclear gene is essential for initiation complex formation on the mitochondrial 55S ribosome and regulates translation of proteins within the mitochondria Changes in the function or expression of the MTIF3 protein may result in altered mitochondrial function ATP production or formation of reactive oxygen species thereby affecting susceptibility to PD We examined the association of rs7669 with sporadic PD in three Caucasian case control series (n = 2434) A significant association was observed in the largest series (Norwegian n = 1650) when comparing CC vs CT/TT genotypes with the Irish and US series having a similar but non-significant trend The combined series also revealed an association with risk of PD (P = 0 01) supporting the possible involvement of this gene in PD etiology Published by Elsevier Ireland Ltd

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the plasma chain-breaking antioxidants alpha carotene, beta carotene, lycopene, Vitamin A, Vitamin C, Vitamin E and a measure of total antioxidant capacity, TAC, in 79 patients with Alzheimer's disease (AD), 37 patients with vascular dementia (VaD), 18 patients with Parkinson's disease and dementia (PDem), and 58 matching controls, together with 41 patients with Parkinson's disease (PD) and 41 matching controls. Significant reductions in individual antioxidants were observed in all dementia groups. When compared to controls, the following were reduced: Vitamin A in AD (p <0.01) and VaD (p <0.001); Vitamin C in AD (p <0.001), VaD (p <0.001) and PDem (p <0.01); Vitamin E in AD (p <0.01) and VaD (p <0.001); beta carotene in VaD (p = 0.01); lycopene in PDem (p <0.001). Lycopene was also reduced in PDem compared to AD (p <0.001) and VaD (p <0.001). Antioxidant levels in PD were not depleted. No significant change in TAC was seen in any group. The reduction in plasma chain-breaking antioxidants in patients with dementia may reflect an increased free-radical activity, and a common role in cognitive impairment in these conditions. Increased free-radical activity in VaD and PDem could be associated with concomitant AD pathology. Individual antioxidant changes are not reflected in TAC.