933 resultados para Parallel computing
Resumo:
Traditional static analysis fails to auto-parallelize programs with a complex control and data flow. Furthermore, thread-level parallelism in such programs is often restricted to pipeline parallelism, which can be hard to discover by a programmer. In this paper we propose a tool that, based on profiling information, helps the programmer to discover parallelism. The programmer hand-picks the code transformations from among the proposed candidates which are then applied by automatic code transformation techniques.
This paper contributes to the literature by presenting a profiling tool for discovering thread-level parallelism. We track dependencies at the whole-data structure level rather than at the element level or byte level in order to limit the profiling overhead. We perform a thorough analysis of the needs and costs of this technique. Furthermore, we present and validate the belief that programs with complex control and data flow contain significant amounts of exploitable coarse-grain pipeline parallelism in the program’s outer loops. This observation validates our approach to whole-data structure dependencies. As state-of-the-art compilers focus on loops iterating over data structure members, this observation also explains why our approach finds coarse-grain pipeline parallelism in cases that have remained out of reach for state-of-the-art compilers. In cases where traditional compilation techniques do find parallelism, our approach allows to discover higher degrees of parallelism, allowing a 40% speedup over traditional compilation techniques. Moreover, we demonstrate real speedups on multiple hardware platforms.
Resumo:
The efficient development of multi-threaded software has, for many years, been an unsolved problem in computer science. Finding a solution to this problem has become urgent with the advent of multi-core processors. Furthermore, the problem has become more complicated because multi-cores are everywhere (desktop, laptop, embedded system). As such, they execute generic programs which exhibit very different characteristics than the scientific applications that have been the focus of parallel computing in the past.
Implicitly parallel programming is an approach to parallel pro- gramming that promises high productivity and efficiency and rules out synchronization errors and race conditions by design. There are two main ingredients to implicitly parallel programming: (i) a con- ventional sequential programming language that is extended with annotations that describe the semantics of the program and (ii) an automatic parallelizing compiler that uses the annotations to in- crease the degree of parallelization.
It is extremely important that the annotations and the automatic parallelizing compiler are designed with the target application do- main in mind. In this paper, we discuss the Paralax approach to im- plicitly parallel programming and we review how the annotations and the compiler design help to successfully parallelize generic programs. We evaluate Paralax on SPECint benchmarks, which are a model for such programs, and demonstrate scalable speedups, up to a factor of 6 on 8 cores.
Resumo:
A framework supporting fast prototyping as well as tuning of distributed applications is presented. The approach is based on the adoption of a formal model that is used to describe the orchestration of distributed applications. The formal model (Orc by Misra and Cook) can be used to support semi-formal reasoning about the applications at hand. The paper describes how the framework can be used to derive and evaluate alternative orchestrations of a well know parallel/distributed computation pattern; and shows how the same formal model can be used to support generation of prototypes of distributed applications skeletons directly from the application description.
Resumo:
Ubiquitous parallel computing aims to make parallel programming accessible to a wide variety of programming areas using deterministic and scale-free programming models built on a task abstraction. However, it remains hard to reconcile these attributes with pipeline parallelism, where the number of pipeline stages is typically hard-coded in the program and defines the degree of parallelism.
This paper introduces hyperqueues, a programming abstraction that enables the construction of deterministic and scale-free pipeline parallel programs. Hyperqueues extend the concept of Cilk++ hyperobjects to provide thread-local views on a shared data structure. While hyperobjects are organized around private local views, hyperqueues require shared concurrent views on the underlying data structure. We define the semantics of hyperqueues and describe their implementation in a work-stealing scheduler. We demonstrate scalable performance on pipeline-parallel PARSEC benchmarks and find that hyperqueues provide comparable or up to 30% better performance than POSIX threads and Intel's Threading Building Blocks. The latter are highly tuned to the number of available processing cores, while programs using hyperqueues are scale-free.
Resumo:
Hardware designers and engineers typically need to explore a multi-parametric design space in order to find the best configuration for their designs using simulations that can take weeks to months to complete. For example, designers of special purpose chips need to explore parameters such as the optimal bitwidth and data representation. This is the case for the development of complex algorithms such as Low-Density Parity-Check (LDPC) decoders used in modern communication systems. Currently, high-performance computing offers a wide set of acceleration options, that range from multicore CPUs to graphics processing units (GPUs) and FPGAs. Depending on the simulation requirements, the ideal architecture to use can vary. In this paper we propose a new design flow based on OpenCL, a unified multiplatform programming model, which accelerates LDPC decoding simulations, thereby significantly reducing architectural exploration and design time. OpenCL-based parallel kernels are used without modifications or code tuning on multicore CPUs, GPUs and FPGAs. We use SOpenCL (Silicon to OpenCL), a tool that automatically converts OpenCL kernels to RTL for mapping the simulations into FPGAs. To the best of our knowledge, this is the first time that a single, unmodified OpenCL code is used to target those three different platforms. We show that, depending on the design parameters to be explored in the simulation, on the dimension and phase of the design, the GPU or the FPGA may suit different purposes more conveniently, providing different acceleration factors. For example, although simulations can typically execute more than 3x faster on FPGAs than on GPUs, the overhead of circuit synthesis often outweighs the benefits of FPGA-accelerated execution.
Resumo:
One of the outstanding issues in parallel computing is the selection of task granularity. This work proposes a solution to the task granularity problem by lowering the overhead of the task scheduler and as such supporting very fine-grain tasks. Using a combination of static (compile-time) scheduling and dynamic (run-time) scheduling, we aim to make scheduling decisions as fast as with static scheduling while retaining the dynamic load- balancing properties of fully dynamic scheduling. We present an example application and discuss the requirements on the compiler and runtime system to realize hybrid static/dynamic scheduling.
Resumo:
Thesis (Master's)--University of Washington, 2012
Resumo:
A vast majority of scientific grid applications are either parameter sweep applications or a significant subpart of these applications belong to class of parameter sweep activities. The paper describes a new graphical workflow language in which any node of the DAG-based workflow can be a parameter sweep node and the execution of these nodes are transparently executed either in service grids or in desktop grids depending on the computational complexity of the workflow node. The new concept is supported by the CancerGrid portal that has been established for a chemist community.