813 resultados para Parallel algorithms
Resumo:
The Mobile Network Optimization (MNO) technologies have advanced at a tremendous pace in recent years. And the Dynamic Network Optimization (DNO) concept emerged years ago, aimed to continuously optimize the network in response to variations in network traffic and conditions. Yet, DNO development is still at its infancy, mainly hindered by a significant bottleneck of the lengthy optimization runtime. This paper identifies parallelism in greedy MNO algorithms and presents an advanced distributed parallel solution. The solution is designed, implemented and applied to real-life projects whose results yield a significant, highly scalable and nearly linear speedup up to 6.9 and 14.5 on distributed 8-core and 16-core systems respectively. Meanwhile, optimization outputs exhibit self-consistency and high precision compared to their sequential counterpart. This is a milestone in realizing the DNO. Further, the techniques may be applied to similar greedy optimization algorithm based applications.
Resumo:
It has been years since the introduction of the Dynamic Network Optimization (DNO) concept, yet the DNO development is still at its infant stage, largely due to a lack of breakthrough in minimizing the lengthy optimization runtime. Our previous work, a distributed parallel solution, has achieved a significant speed gain. To cater for the increased optimization complexity pressed by the uptake of smartphones and tablets, however, this paper examines the potential areas for further improvement and presents a novel asynchronous distributed parallel design that minimizes the inter-process communications. The new approach is implemented and applied to real-life projects whose results demonstrate an augmented acceleration of 7.5 times on a 16-core distributed system compared to 6.1 of our previous solution. Moreover, there is no degradation in the optimization outcome. This is a solid sprint towards the realization of DNO.
Resumo:
This paper compares three alternative numerical algorithms applied to a nonlinear metal cutting problem. One algorithm is based on an explicit method and the other two are implicit. Domain decomposition (DD) is used to break the original domain into subdomains, each containing a properly connected, well-formulated and continuous subproblem. The serial version of the explicit algorithm is implemented in FORTRAN and its parallel version uses MPI (Message Passing Interface) calls. One implicit algorithm is implemented by coupling the state-of-the-art PETSc (Portable, Extensible Toolkit for Scientific Computation) software with in-house software in order to solve the subproblems. The second implicit algorithm is implemented completely within PETSc. PETSc uses MPI as the underlying communication library. Finally, a 2D example is used to test the algorithms and various comparisons are made.
Resumo:
This chapter describes a parallel optimization technique that incorporates a distributed load-balancing algorithm and provides an extremely fast solution to the problem of load-balancing adaptive unstructured meshes. Moreover, a parallel graph contraction technique can be employed to enhance the partition quality and the resulting strategy outperforms or matches results from existing state-of-the-art static mesh partitioning algorithms. The strategy can also be applied to static partitioning problems. Dynamic procedures have been found to be much faster than static techniques, to provide partitions of similar or higher quality and, in comparison, involve the migration of a fraction of the data. The method employs a new iterative optimization technique that balances the workload and attempts to minimize the interprocessor communications overhead. Experiments on a series of adaptively refined meshes indicate that the algorithm provides partitions of an equivalent or higher quality to static partitioners (which do not reuse the existing partition) and much more quickly. The dynamic evolution of load has three major influences on possible partitioning techniques; cost, reuse, and parallelism. The unstructured mesh may be modified every few time-steps and so the load-balancing must have a low cost relative to that of the solution algorithm in between remeshing.
Resumo:
A method is outlined for optimising graph partitions which arise in mapping un- structured mesh calculations to parallel computers. The method employs a combination of iterative techniques to both evenly balance the workload and minimise the number and volume of interprocessor communications. They are designed to work efficiently in parallel as well as sequentially and when combined with a fast direct partitioning technique (such as the Greedy algorithm) to give an initial partition, the resulting two-stage process proves itself to be both a powerful and flexible solution to the static graph-partitioning problem. The algorithms can also be used for dynamic load-balancing and a clustering technique can additionally be employed to speed up the whole process. Experiments indicate that the resulting parallel code can provide high quality partitions, independent of the initial partition, within a few seconds.
Resumo:
A method is outlined for optimising graph partitions which arise in mapping unstructured mesh calculations to parallel computers. The method employs a relative gain iterative technique to both evenly balance the workload and minimise the number and volume of interprocessor communications. A parallel graph reduction technique is also briefly described and can be used to give a global perspective to the optimisation. The algorithms work efficiently in parallel as well as sequentially and when combined with a fast direct partitioning technique (such as the Greedy algorithm) to give an initial partition, the resulting two-stage process proves itself to be both a powerful and flexible solution to the static graph-partitioning problem. Experiments indicate that the resulting parallel code can provide high quality partitions, independent of the initial partition, within a few seconds. The algorithms can also be used for dynamic load-balancing, reusing existing partitions and in this case the procedures are much faster than static techniques, provide partitions of similar or higher quality and, in comparison, involve the migration of a fraction of the data.
Resumo:
Image and video compression play a major role in the world today, allowing the storage and transmission of large multimedia content volumes. However, the processing of this information requires high computational resources, hence the improvement of the computational performance of these compression algorithms is very important. The Multidimensional Multiscale Parser (MMP) is a pattern-matching-based compression algorithm for multimedia contents, namely images, achieving high compression ratios, maintaining good image quality, Rodrigues et al. [2008]. However, in comparison with other existing algorithms, this algorithm takes some time to execute. Therefore, two parallel implementations for GPUs were proposed by Ribeiro [2016] and Silva [2015] in CUDA and OpenCL-GPU, respectively. In this dissertation, to complement the referred work, we propose two parallel versions that run the MMP algorithm in CPU: one resorting to OpenMP and another that converts the existing OpenCL-GPU into OpenCL-CPU. The proposed solutions are able to improve the computational performance of MMP by 3 and 2:7 , respectively. The High Efficiency Video Coding (HEVC/H.265) is the most recent standard for compression of image and video. Its impressive compression performance, makes it a target for many adaptations, particularly for holoscopic image/video processing (or light field). Some of the proposed modifications to encode this new multimedia content are based on geometry-based disparity compensations (SS), developed by Conti et al. [2014], and a Geometric Transformations (GT) module, proposed by Monteiro et al. [2015]. These compression algorithms for holoscopic images based on HEVC present an implementation of specific search for similar micro-images that is more efficient than the one performed by HEVC, but its implementation is considerably slower than HEVC. In order to enable better execution times, we choose to use the OpenCL API as the GPU enabling language in order to increase the module performance. With its most costly setting, we are able to reduce the GT module execution time from 6.9 days to less then 4 hours, effectively attaining a speedup of 45 .
Resumo:
In this project an optimal pose selection method for the calibration of an overconstrained Cable-Driven Parallel robot is presented. This manipulator belongs to a subcategory of parallel robots, where the classic rigid "legs" are replaced by cables. Cables are flexible elements that bring advantages and disadvantages to the robot modeling. For this reason, there are many open research issues, and the calibration of geometric parameters is one of them. The identification of the geometry of a robot, in particular, is usually called Kinematic Calibration. Many methods have been proposed in the past years for the solution of the latter problem. Although these methods are based on calibration using different kinematic models, when the robot’s geometry becomes more complex, their robustness and reliability decrease. This fact makes the selection of the calibration poses more complicated. The position and the orientation of the endeffector in the workspace become important in terms of selection. Thus, in general, it is necessary to evaluate the robustness of the chosen calibration method, by means, for example, of a parameter such as the observability index. In fact, it is known from the theory, that the maximization of the above mentioned index identifies the best choice of calibration poses, and consequently, using this pose set may improve the calibration process. The objective of this thesis is to analyze optimization algorithms which aim to calculate an optimal choice of poses both in quantitative and qualitative terms. Quantitatively, because it is of fundamental importance to understand how many poses are needed. Not necessarily a greater number of poses leads to a better result. Qualitatively, because it is useful to understand if the selected combination of poses actually gives additional information in the process of the identification of the parameters.
Resumo:
Cable-driven parallel robots offer significant advantages in terms of workspace dimensions and payload capability. They are attractive for many industrial tasks to be performed on a large scale, such as handling and manufacturing, without a substantial increase in costs and mechanical complexity with respect to a small-scale application. However, since cables can only sustain tensile stresses, cable tensions must be kept within positive limits during the end-effector motion. This problem can be managed by overconstraining the end-effector and controlling cable tensions. Tension control is typically achieved by mounting a load sensor on all cables, and using specific control algorithms to avoid cable slackness or breakage while the end-effector is controlled in a desired position. These algorithms require multiple cascade control loops and they can be complex and computationally demanding. To simplify the control of overconstrained cable-driven parallel robots, this Thesis proposes suitable mechanical design and hybrid control strategies. It is shown how a convenient design of the cable guidance system allows kinematic modeling to be simplified, without introducing geometric approximations. This guidance system employs swiveling pulleys equipped with position and tension sensors and provides a parallelogram arrangement of cables. Furthermore, a hybrid force/position control in the robot joint space is adopted. According to this strategy, a particular set of cables is chosen to be tension-controlled, whereas the other cables are length-controlled. The force-controlled cables are selected based on the computation of a novel index called force-distribution sensitivity to cable-tension errors. This index aims to evaluate the maximum expected cable-tension error in the length-controlled cables if a unit tension error is committed in the force-controlled cables. In practice, the computation of the force-distribution sensitivity allows determining which cables are best to be force-controlled, to ensure the lowest error in the overall force distribution when a hybrid force/position joint-space strategy is used.
Resumo:
Continuum parallel robots (CPRs) are manipulators employing multiple flexible beams arranged in parallel and connected to a rigid end-effector. CPRs promise higher payload and accuracy than serial CRs while keeping great flexibility. As the risk of injury during accidental contacts between a human and a CPR should be reduced, CPRs may be used in large-scale collaborative tasks or assisted robotic surgery. There exist various CPR designs, but the prototype conception is rarely based on performance considerations, and the CPRs realization in mainly based on intuitions or rigid-link parallel manipulators architectures. This thesis focuses on the performance analysis of CPRs, and the tools needed for such evaluation, such as workspace computation algorithms. In particular, workspace computation strategies for CPRs are essential for the performance assessment, since the CPRs workspace may be used as a performance index or it can serve for optimal-design tools. Two new workspace computation algorithms are proposed in this manuscript, the former focusing on the workspace volume computation and the certification of its numerical results, while the latter aims at computing the workspace boundary only. Due to the elastic nature of CPRs, a key performance indicator for these robots is the stability of their equilibrium configurations. This thesis proposes the experimental validation of the equilibrium stability assessment on a real prototype, demonstrating limitations of some commonly used assumptions. Additionally, a performance index measuring the distance to instability is originally proposed in this manuscript. Differently from the majority of the existing approaches, the clear advantage of the proposed index is a sound physical meaning; accordingly, the index can be used for a more straightforward performance quantification, and to derive robot specifications.
Biased Random-key Genetic Algorithms For The Winner Determination Problem In Combinatorial Auctions.
Resumo:
Abstract In this paper, we address the problem of picking a subset of bids in a general combinatorial auction so as to maximize the overall profit using the first-price model. This winner determination problem assumes that a single bidding round is held to determine both the winners and prices to be paid. We introduce six variants of biased random-key genetic algorithms for this problem. Three of them use a novel initialization technique that makes use of solutions of intermediate linear programming relaxations of an exact mixed integer-linear programming model as initial chromosomes of the population. An experimental evaluation compares the effectiveness of the proposed algorithms with the standard mixed linear integer programming formulation, a specialized exact algorithm, and the best-performing heuristics proposed for this problem. The proposed algorithms are competitive and offer strong results, mainly for large-scale auctions.
Resumo:
Prince Maximilian zu Wied's great exploration of coastal Brazil in 1815-1817 resulted in important collections of reptiles, amphibians, birds, and mammals, many of which were new species later described by Wied himself The bulk of his collection was purchased for the American Museum of Natural History in 1869, although many ""type specimens"" had disappeared earlier. Wied carefully identified his localities but did not designate type specimens or type localities, which are taxonomic concepts that were not yet established. Information and manuscript names on a fraction (17 species) of his Brazilian reptiles and amphibians were transmitted by Wied to Prof. Heinrich Rudolf Schinz at the University of Zurich. Schinz included these species (credited to their discoverer ""Princ. Max."") in the second volume of Das Thierreich ... (1822). Most are junior objective synonyms of names published by Wied. However, six of the 17 names used by Schinz predate Wied's own publications. Three were manuscript names never published by Wied because he determined the species to be previously known. (1) Lacerta vittata Schinz, 1822 (a nomen oblitum) = Lacerta striata sensu Wied (a misidentification, non Linnaeus nec sensu Merrem) = Kentropyx calcarata Spix, 1825, herein qualified as a nomen protectum. (2) Polychrus virescens Schinz, 1822 = Lacerta marmorata Linnaeus, 1758 (now Polychrus marmoratus). (3) Scincus cyanurus Schinz, 1822 (a nomen oblitum) = Gymnophthalmus quadrilineatus sensu Wied (a misidentification, non Linnaeus nec sensu Merrem) = Micrablepharus maximiliani (Reinhardt and Lutken, ""1861"" [1862]), herein qualified as a nomen protectum. Qualifying Scincus cyanurus Schinz, 1822, as a nomen oblitum also removes the problem of homonymy with the later-named Pacific skink Scincus cyanurus Lesson (= Emoia cyanura). The remaining three names used by Schinz are senior objective synonyms that take priority over Wied's names. (4) Bufo cinctus Schinz, 1822, is senior to Bufo cinctus Wied, 1823; both, however, are junior synonyms of Bufo crucifer Wied, 1821 = Chaunus crucifer (Wied). (5) Agama picta Schinz, 1822, is senior to Agama picta Wied, 1823, requiring a change of authorship for this poorly known species, to be known as Enyalius pictus (Schinz). (6) Lacerta cyanomelas Schinz, 1822, predates Teius cyanomelas Wied, 1824 (1822-1831) both nomina oblita. Wied's illustration and description shows cyanomelas as apparently conspecific with the recently described but already well-known Cnemidophorus nativo Rocha et al., 1997, which is the valid name because of its qualification herein as a nomen protectum. The preceding specific name cyanomelas (as corrected in an errata section) is misspelled several ways in different copies of Schinz's original description (""cyanom las,"" ""cyanomlas,"" and cyanom""). Loosening, separation, and final loss of the last three letters of movable type in the printing chase probably accounts for the variant misspellings.
Resumo:
We propose and analyze two different Bayesian online algorithms for learning in discrete Hidden Markov Models and compare their performance with the already known Baldi-Chauvin Algorithm. Using the Kullback-Leibler divergence as a measure of generalization we draw learning curves in simplified situations for these algorithms and compare their performances.
Resumo:
Background: Feature selection is a pattern recognition approach to choose important variables according to some criteria in order to distinguish or explain certain phenomena (i.e., for dimensionality reduction). There are many genomic and proteomic applications that rely on feature selection to answer questions such as selecting signature genes which are informative about some biological state, e. g., normal tissues and several types of cancer; or inferring a prediction network among elements such as genes, proteins and external stimuli. In these applications, a recurrent problem is the lack of samples to perform an adequate estimate of the joint probabilities between element states. A myriad of feature selection algorithms and criterion functions have been proposed, although it is difficult to point the best solution for each application. Results: The intent of this work is to provide an open-source multiplataform graphical environment for bioinformatics problems, which supports many feature selection algorithms, criterion functions and graphic visualization tools such as scatterplots, parallel coordinates and graphs. A feature selection approach for growing genetic networks from seed genes ( targets or predictors) is also implemented in the system. Conclusion: The proposed feature selection environment allows data analysis using several algorithms, criterion functions and graphic visualization tools. Our experiments have shown the software effectiveness in two distinct types of biological problems. Besides, the environment can be used in different pattern recognition applications, although the main concern regards bioinformatics tasks.
Resumo:
In this paper, artificial neural networks are employed in a novel approach to identify harmonic components of single-phase nonlinear load currents, whose amplitude and phase angle are subject to unpredictable changes, even in steady-state. The first six harmonic current components are identified through the variation analysis of waveform characteristics. The effectiveness of this method is tested by applying it to the model of a single-phase active power filter, dedicated to the selective compensation of harmonic current drained by an AC controller. Simulation and experimental results are presented to validate the proposed approach. (C) 2010 Elsevier B. V. All rights reserved.