984 resultados para PROGRAMMING APPROACH
Resumo:
Tämä kandidaatintyö tutkii tietotekniikan perusopetuksessa keskeisen aiheen,ohjelmoinnin, alkeisopetusta ja siihen liittyviä ongelmia. Työssä perehdytään ohjelmoinnin perusopetusmenetelmiin ja opetuksen lähestymistapoihin, sekä ratkaisuihin, joilla opetusta voidaan tehostaa. Näitä ratkaisuja työssä ovat mm. ohjelmointikielen valinta, käytettävän kehitysympäristön löytäminen sekä kurssia tukevien opetusapuvälineiden etsiminen. Lisäksi kurssin läpivientiin liittyvien toimintojen, kuten harjoitusten ja mahdollisten viikkotehtävien valinta kuuluu osaksitätä työtä. Työ itsessään lähestyy aihetta tutkimalla Pythonin soveltuvuutta ohjelmoinnin alkeisopetukseen mm. vertailemalla sitä muihin olemassa oleviin yleisiin opetuskieliin, kuten C, C++ tai Java. Se tarkastelee kielen hyviä ja huonoja puolia, sekä tutkii, voidaanko Pythonia hyödyntää luontevasti pääasiallisena opetuskielenä. Lisäksi työ perehtyy siihen, mitä kaikkea kurssilla tulisi opettaa, sekä siihen, kuinka kurssin läpivienti olisi tehokkainta toteuttaa ja minkälaiset tekniset puitteet kurssin toteuttamista varten olisi järkevää valita.
Resumo:
Global warming mitigation has recently become a priority worldwide. A large body of literature dealing with energy related problems has focused on reducing greenhouse gases emissions at an engineering scale. In contrast, the minimization of climate change at a wider macroeconomic level has so far received much less attention. We investigate here the issue of how to mitigate global warming by performing changes in an economy. To this end, we make use of a systematic tool that combines three methods: linear programming, environmentally extended input output models, and life cycle assessment principles. The problem of identifying key economic sectors that contribute significantly to global warming is posed in mathematical terms as a bi criteria linear program that seeks to optimize simultaneously the total economic output and the total life cycle CO2 emissions. We have applied this approach to the European Union economy, finding that significant reductions in global warming potential can be attained by regulating specific economic sectors. Our tool is intended to aid policymakers in the design of more effective public policies for achieving the environmental and economic targets sought.
Resumo:
The skill of programming is a key asset for every computer science student. Many studies have shown that this is a hard skill to learn and the outcomes of programming courses have often been substandard. Thus, a range of methods and tools have been developed to assist students’ learning processes. One of the biggest fields in computer science education is the use of visualizations as a learning aid and many visualization based tools have been developed to aid the learning process during last few decades. Studies conducted in this thesis focus on two different visualizationbased tools TRAKLA2 and ViLLE. This thesis includes results from multiple empirical studies about what kind of effects the introduction and usage of these tools have on students’ opinions and performance, and what kind of implications there are from a teacher’s point of view. The results from studies in this thesis show that students preferred to do web-based exercises, and felt that those exercises contributed to their learning. The usage of the tool motivated students to work harder during their course, which was shown in overall course performance and drop-out statistics. We have also shown that visualization-based tools can be used to enhance the learning process, and one of the key factors is the higher and active level of engagement (see. Engagement Taxonomy by Naps et al., 2002). The automatic grading accompanied with immediate feedback helps students to overcome obstacles during the learning process, and to grasp the key element in the learning task. These kinds of tools can help us to cope with the fact that many programming courses are overcrowded with limited teaching resources. These tools allows us to tackle this problem by utilizing automatic assessment in exercises that are most suitable to be done in the web (like tracing and simulation) since its supports students’ independent learning regardless of time and place. In summary, we can use our course’s resources more efficiently to increase the quality of the learning experience of the students and the teaching experience of the teacher, and even increase performance of the students. There are also methodological results from this thesis which contribute to developing insight into the conduct of empirical evaluations of new tools or techniques. When we evaluate a new tool, especially one accompanied with visualization, we need to give a proper introduction to it and to the graphical notation used by tool. The standard procedure should also include capturing the screen with audio to confirm that the participants of the experiment are doing what they are supposed to do. By taken such measures in the study of the learning impact of visualization support for learning, we can avoid drawing false conclusion from our experiments. As computer science educators, we face two important challenges. Firstly, we need to start to deliver the message in our own institution and all over the world about the new – scientifically proven – innovations in teaching like TRAKLA2 and ViLLE. Secondly, we have the relevant experience of conducting teaching related experiment, and thus we can support our colleagues to learn essential know-how of the research based improvement of their teaching. This change can transform academic teaching into publications and by utilizing this approach we can significantly increase the adoption of the new tools and techniques, and overall increase the knowledge of best-practices. In future, we need to combine our forces and tackle these universal and common problems together by creating multi-national and multiinstitutional research projects. We need to create a community and a platform in which we can share these best practices and at the same time conduct multi-national research projects easily.
Resumo:
The development of correct programs is a core problem in computer science. Although formal verification methods for establishing correctness with mathematical rigor are available, programmers often find these difficult to put into practice. One hurdle is deriving the loop invariants and proving that the code maintains them. So called correct-by-construction methods aim to alleviate this issue by integrating verification into the programming workflow. Invariant-based programming is a practical correct-by-construction method in which the programmer first establishes the invariant structure, and then incrementally extends the program in steps of adding code and proving after each addition that the code is consistent with the invariants. In this way, the program is kept internally consistent throughout its development, and the construction of the correctness arguments (proofs) becomes an integral part of the programming workflow. A characteristic of the approach is that programs are described as invariant diagrams, a graphical notation similar to the state charts familiar to programmers. Invariant-based programming is a new method that has not been evaluated in large scale studies yet. The most important prerequisite for feasibility on a larger scale is a high degree of automation. The goal of the Socos project has been to build tools to assist the construction and verification of programs using the method. This thesis describes the implementation and evaluation of a prototype tool in the context of the Socos project. The tool supports the drawing of the diagrams, automatic derivation and discharging of verification conditions, and interactive proofs. It is used to develop programs that are correct by construction. The tool consists of a diagrammatic environment connected to a verification condition generator and an existing state-of-the-art theorem prover. Its core is a semantics for translating diagrams into verification conditions, which are sent to the underlying theorem prover. We describe a concrete method for 1) deriving sufficient conditions for total correctness of an invariant diagram; 2) sending the conditions to the theorem prover for simplification; and 3) reporting the results of the simplification to the programmer in a way that is consistent with the invariantbased programming workflow and that allows errors in the program specification to be efficiently detected. The tool uses an efficient automatic proof strategy to prove as many conditions as possible automatically and lets the remaining conditions be proved interactively. The tool is based on the verification system PVS and i uses the SMT (Satisfiability Modulo Theories) solver Yices as a catch-all decision procedure. Conditions that were not discharged automatically may be proved interactively using the PVS proof assistant. The programming workflow is very similar to the process by which a mathematical theory is developed inside a computer supported theorem prover environment such as PVS. The programmer reduces a large verification problem with the aid of the tool into a set of smaller problems (lemmas), and he can substantially improve the degree of proof automation by developing specialized background theories and proof strategies to support the specification and verification of a specific class of programs. We demonstrate this workflow by describing in detail the construction of a verified sorting algorithm. Tool-supported verification often has little to no presence in computer science (CS) curricula. Furthermore, program verification is frequently introduced as an advanced and purely theoretical topic that is not connected to the workflow taught in the early and practically oriented programming courses. Our hypothesis is that verification could be introduced early in the CS education, and that verification tools could be used in the classroom to support the teaching of formal methods. A prototype of Socos has been used in a course at Åbo Akademi University targeted at first and second year undergraduate students. We evaluate the use of Socos in the course as part of a case study carried out in 2007.
Resumo:
Programming and mathematics are core areas of computer science (CS) and consequently also important parts of CS education. Introductory instruction in these two topics is, however, not without problems. Studies show that CS students find programming difficult to learn and that teaching mathematical topics to CS novices is challenging. One reason for the latter is the disconnection between mathematics and programming found in many CS curricula, which results in students not seeing the relevance of the subject for their studies. In addition, reports indicate that students' mathematical capability and maturity levels are dropping. The challenges faced when teaching mathematics and programming at CS departments can also be traced back to gaps in students' prior education. In Finland the high school curriculum does not include CS as a subject; instead, focus is on learning to use the computer and its applications as tools. Similarly, many of the mathematics courses emphasize application of formulas, while logic, formalisms and proofs, which are important in CS, are avoided. Consequently, high school graduates are not well prepared for studies in CS. Motivated by these challenges, the goal of the present work is to describe new approaches to teaching mathematics and programming aimed at addressing these issues: Structured derivations is a logic-based approach to teaching mathematics, where formalisms and justifications are made explicit. The aim is to help students become better at communicating their reasoning using mathematical language and logical notation at the same time as they become more confident with formalisms. The Python programming language was originally designed with education in mind, and has a simple syntax compared to many other popular languages. The aim of using it in instruction is to address algorithms and their implementation in a way that allows focus to be put on learning algorithmic thinking and programming instead of on learning a complex syntax. Invariant based programming is a diagrammatic approach to developing programs that are correct by construction. The approach is based on elementary propositional and predicate logic, and makes explicit the underlying mathematical foundations of programming. The aim is also to show how mathematics in general, and logic in particular, can be used to create better programs.
Resumo:
En option är ett finansiellt kontrakt som ger dess innehavare en rättighet (men medför ingen skyldighet) att sälja eller köpa någonting (till exempel en aktie) till eller från säljaren av optionen till ett visst pris vid en bestämd tidpunkt i framtiden. Den som säljer optionen binder sig till att gå med på denna framtida transaktion ifall optionsinnehavaren längre fram bestämmer sig för att inlösa optionen. Säljaren av optionen åtar sig alltså en risk av att den framtida transaktion som optionsinnehavaren kan tvinga honom att göra visar sig vara ofördelaktig för honom. Frågan om hur säljaren kan skydda sig mot denna risk leder till intressanta optimeringsproblem, där målet är att hitta en optimal skyddsstrategi under vissa givna villkor. Sådana optimeringsproblem har studerats mycket inom finansiell matematik. Avhandlingen "The knapsack problem approach in solving partial hedging problems of options" inför en ytterligare synpunkt till denna diskussion: I en relativt enkel (ändlig och komplett) marknadsmodell kan nämligen vissa partiella skyddsproblem beskrivas som så kallade kappsäcksproblem. De sistnämnda är välkända inom en gren av matematik som heter operationsanalys. I avhandlingen visas hur skyddsproblem som tidigare lösts på andra sätt kan alternativt lösas med hjälp av metoder som utvecklats för kappsäcksproblem. Förfarandet tillämpas även på helt nya skyddsproblem i samband med så kallade amerikanska optioner.
Resumo:
This research studioo the effect of integrated instruction in mathematics and~ science on student achievement in and attitude towards both mathematics and science. A group of grade 9 academic students received instruction in both science and mathematics in an integrated program specifically developed for the purposes of the research. This group was compared to a control group that had received science and mathematics instruction in a traditional, nonintegrated program. The findings showed that in all measures of attitude, there was no significant difference between the students who participated in the integrated science and mathematics program and those who participated in a traditional science and mathematics program. The findings also revealed that integration did improve achievement on some of the measures used. The performance on mathematics open-ended problem-solving tasks improved after participation in the integrated program, suggesting that the integrated students were better able to apply their understanding of mathematics in a real-life context. The performance on the final science exam was also improved for the integrated group. Improvement was not noted on the other measures, which included EQAO scores and laboratory practical tasks. These results raise the issue of the suitability of the instruments used to gauge both achievement and attitude. The accuracy and suitability of traditional measures of achievement are considered. It is argued that they should not necessarily be used as the measure of the value of integrated instruction in a science and mathematics classroom.
Resumo:
Three dimensional model design is a well-known and studied field, with numerous real-world applications. However, the manual construction of these models can often be time-consuming to the average user, despite the advantages o ffered through computational advances. This thesis presents an approach to the design of 3D structures using evolutionary computation and L-systems, which involves the automated production of such designs using a strict set of fitness functions. These functions focus on the geometric properties of the models produced, as well as their quantifiable aesthetic value - a topic which has not been widely investigated with respect to 3D models. New extensions to existing aesthetic measures are discussed and implemented in the presented system in order to produce designs which are visually pleasing. The system itself facilitates the construction of models requiring minimal user initialization and no user-based feedback throughout the evolutionary cycle. The genetic programming evolved models are shown to satisfy multiple criteria, conveying a relationship between their assigned aesthetic value and their perceived aesthetic value. Exploration into the applicability and e ffectiveness of a multi-objective approach to the problem is also presented, with a focus on both performance and visual results. Although subjective, these results o er insight into future applications and study in the fi eld of computational aesthetics and automated structure design.
Resumo:
This thesis focuses on developing an evolutionary art system using genetic programming. The main goal is to produce new forms of evolutionary art that filter existing images into new non-photorealistic (NPR) styles, by obtaining images that look like traditional media such as watercolor or pencil, as well as brand new effects. The approach permits GP to generate creative forms of NPR results. The GP language is extended with different techniques and methods inspired from NPR research such as colour mixing expressions, image processing filters and painting algorithm. Colour mixing is a major new contribution, as it enables many familiar and innovative NPR effects to arise. Another major innovation is that many GP functions process the canvas (rendered image), while is dynamically changing. Automatic fitness scoring uses aesthetic evaluation models and statistical analysis, and multi-objective fitness evaluation is used. Results showed a variety of NPR effects, as well as new, creative possibilities.
Resumo:
Complex networks can arise naturally and spontaneously from all things that act as a part of a larger system. From the patterns of socialization between people to the way biological systems organize themselves, complex networks are ubiquitous, but are currently poorly understood. A number of algorithms, designed by humans, have been proposed to describe the organizational behaviour of real-world networks. Consequently, breakthroughs in genetics, medicine, epidemiology, neuroscience, telecommunications and the social sciences have recently resulted. The algorithms, called graph models, represent significant human effort. Deriving accurate graph models is non-trivial, time-intensive, challenging and may only yield useful results for very specific phenomena. An automated approach can greatly reduce the human effort required and if effective, provide a valuable tool for understanding the large decentralized systems of interrelated things around us. To the best of the author's knowledge this thesis proposes the first method for the automatic inference of graph models for complex networks with varied properties, with and without community structure. Furthermore, to the best of the author's knowledge it is the first application of genetic programming for the automatic inference of graph models. The system and methodology was tested against benchmark data, and was shown to be capable of reproducing close approximations to well-known algorithms designed by humans. Furthermore, when used to infer a model for real biological data the resulting model was more representative than models currently used in the literature.
Resumo:
A complex network is an abstract representation of an intricate system of interrelated elements where the patterns of connection hold significant meaning. One particular complex network is a social network whereby the vertices represent people and edges denote their daily interactions. Understanding social network dynamics can be vital to the mitigation of disease spread as these networks model the interactions, and thus avenues of spread, between individuals. To better understand complex networks, algorithms which generate graphs exhibiting observed properties of real-world networks, known as graph models, are often constructed. While various efforts to aid with the construction of graph models have been proposed using statistical and probabilistic methods, genetic programming (GP) has only recently been considered. However, determining that a graph model of a complex network accurately describes the target network(s) is not a trivial task as the graph models are often stochastic in nature and the notion of similarity is dependent upon the expected behavior of the network. This thesis examines a number of well-known network properties to determine which measures best allowed networks generated by different graph models, and thus the models themselves, to be distinguished. A proposed meta-analysis procedure was used to demonstrate how these network measures interact when used together as classifiers to determine network, and thus model, (dis)similarity. The analytical results form the basis of the fitness evaluation for a GP system used to automatically construct graph models for complex networks. The GP-based automatic inference system was used to reproduce existing, well-known graph models as well as a real-world network. Results indicated that the automatically inferred models exemplified functional similarity when compared to their respective target networks. This approach also showed promise when used to infer a model for a mammalian brain network.
Object-Oriented Genetic Programming for the Automatic Inference of Graph Models for Complex Networks
Resumo:
Complex networks are systems of entities that are interconnected through meaningful relationships. The result of the relations between entities forms a structure that has a statistical complexity that is not formed by random chance. In the study of complex networks, many graph models have been proposed to model the behaviours observed. However, constructing graph models manually is tedious and problematic. Many of the models proposed in the literature have been cited as having inaccuracies with respect to the complex networks they represent. However, recently, an approach that automates the inference of graph models was proposed by Bailey [10] The proposed methodology employs genetic programming (GP) to produce graph models that approximate various properties of an exemplary graph of a targeted complex network. However, there is a great deal already known about complex networks, in general, and often specific knowledge is held about the network being modelled. The knowledge, albeit incomplete, is important in constructing a graph model. However it is difficult to incorporate such knowledge using existing GP techniques. Thus, this thesis proposes a novel GP system which can incorporate incomplete expert knowledge that assists in the evolution of a graph model. Inspired by existing graph models, an abstract graph model was developed to serve as an embryo for inferring graph models of some complex networks. The GP system and abstract model were used to reproduce well-known graph models. The results indicated that the system was able to evolve models that produced networks that had structural similarities to the networks generated by the respective target models.
Resumo:
As a result of mutation in genes, which is a simple change in our DNA, we will have undesirable phenotypes which are known as genetic diseases or disorders. These small changes, which happen frequently, can have extreme results. Understanding and identifying these changes and associating these mutated genes with genetic diseases can play an important role in our health, by making us able to find better diagnosis and therapeutic strategies for these genetic diseases. As a result of years of experiments, there is a vast amount of data regarding human genome and different genetic diseases that they still need to be processed properly to extract useful information. This work is an effort to analyze some useful datasets and to apply different techniques to associate genes with genetic diseases. Two genetic diseases were studied here: Parkinson’s disease and breast cancer. Using genetic programming, we analyzed the complex network around known disease genes of the aforementioned diseases, and based on that we generated a ranking for genes, based on their relevance to these diseases. In order to generate these rankings, centrality measures of all nodes in the complex network surrounding the known disease genes of the given genetic disease were calculated. Using genetic programming, all the nodes were assigned scores based on the similarity of their centrality measures to those of the known disease genes. Obtained results showed that this method is successful at finding these patterns in centrality measures and the highly ranked genes are worthy as good candidate disease genes for being studied. Using standard benchmark tests, we tested our approach against ENDEAVOUR and CIPHER - two well known disease gene ranking frameworks - and we obtained comparable results.
Resumo:
La programmation linéaire en nombres entiers est une approche robuste qui permet de résoudre rapidement de grandes instances de problèmes d'optimisation discrète. Toutefois, les problèmes gagnent constamment en complexité et imposent parfois de fortes limites sur le temps de calcul. Il devient alors nécessaire de développer des méthodes spécialisées afin de résoudre approximativement ces problèmes, tout en calculant des bornes sur leurs valeurs optimales afin de prouver la qualité des solutions obtenues. Nous proposons d'explorer une approche de reformulation en nombres entiers guidée par la relaxation lagrangienne. Après l'identification d'une forte relaxation lagrangienne, un processus systématique permet d'obtenir une seconde formulation en nombres entiers. Cette reformulation, plus compacte que celle de Dantzig et Wolfe, comporte exactement les mêmes solutions entières que la formulation initiale, mais en améliore la borne linéaire: elle devient égale à la borne lagrangienne. L'approche de reformulation permet d'unifier et de généraliser des formulations et des méthodes de borne connues. De plus, elle offre une manière simple d'obtenir des reformulations de moins grandes tailles en contrepartie de bornes plus faibles. Ces reformulations demeurent de grandes tailles. C'est pourquoi nous décrivons aussi des méthodes spécialisées pour en résoudre les relaxations linéaires. Finalement, nous appliquons l'approche de reformulation à deux problèmes de localisation. Cela nous mène à de nouvelles formulations pour ces problèmes; certaines sont de très grandes tailles, mais nos méthodes de résolution spécialisées les rendent pratiques.
Resumo:
Les systèmes logiciels sont devenus de plus en plus répondus et importants dans notre société. Ainsi, il y a un besoin constant de logiciels de haute qualité. Pour améliorer la qualité de logiciels, l’une des techniques les plus utilisées est le refactoring qui sert à améliorer la structure d'un programme tout en préservant son comportement externe. Le refactoring promet, s'il est appliqué convenablement, à améliorer la compréhensibilité, la maintenabilité et l'extensibilité du logiciel tout en améliorant la productivité des programmeurs. En général, le refactoring pourra s’appliquer au niveau de spécification, conception ou code. Cette thèse porte sur l'automatisation de processus de recommandation de refactoring, au niveau code, s’appliquant en deux étapes principales: 1) la détection des fragments de code qui devraient être améliorés (e.g., les défauts de conception), et 2) l'identification des solutions de refactoring à appliquer. Pour la première étape, nous traduisons des régularités qui peuvent être trouvés dans des exemples de défauts de conception. Nous utilisons un algorithme génétique pour générer automatiquement des règles de détection à partir des exemples de défauts. Pour la deuxième étape, nous introduisons une approche se basant sur une recherche heuristique. Le processus consiste à trouver la séquence optimale d'opérations de refactoring permettant d'améliorer la qualité du logiciel en minimisant le nombre de défauts tout en priorisant les instances les plus critiques. De plus, nous explorons d'autres objectifs à optimiser: le nombre de changements requis pour appliquer la solution de refactoring, la préservation de la sémantique, et la consistance avec l’historique de changements. Ainsi, réduire le nombre de changements permets de garder autant que possible avec la conception initiale. La préservation de la sémantique assure que le programme restructuré est sémantiquement cohérent. De plus, nous utilisons l'historique de changement pour suggérer de nouveaux refactorings dans des contextes similaires. En outre, nous introduisons une approche multi-objective pour améliorer les attributs de qualité du logiciel (la flexibilité, la maintenabilité, etc.), fixer les « mauvaises » pratiques de conception (défauts de conception), tout en introduisant les « bonnes » pratiques de conception (patrons de conception).