978 resultados para PREOPERATIVE RADIATION-THERAPY
Resumo:
The synchronization of dynamic multileaf collimator (DMLC) response with respiratory motion is critical to ensure the accuracy of DMLC-based four dimensional (4D) radiation delivery. In practice, however, a finite time delay (response time) between the acquisition of tumor position and multileaf collimator response necessitates predictive models of respiratory tumor motion to synchronize radiation delivery. Predicting a complex process such as respiratory motion introduces geometric errors, which have been reported in several publications. However, the dosimetric effect of such errors on 4D radiation delivery has not yet been investigated. Thus, our aim in this work was to quantify the dosimetric effects of geometric error due to prediction under several different conditions. Conformal and intensity modulated radiation therapy (IMRT) plans for a lung patient were generated for anterior-posterior/posterior-anterior (AP/PA) beam arrangements at 6 and 18 MV energies to provide planned dose distributions. Respiratory motion data was obtained from 60 diaphragm-motion fluoroscopy recordings from five patients. A linear adaptive filter was employed to predict the tumor position. The geometric error of prediction was defined as the absolute difference between predicted and actual positions at each diaphragm position. Distributions of geometric error of prediction were obtained for all of the respiratory motion data. Planned dose distributions were then convolved with distributions for the geometric error of prediction to obtain convolved dose distributions. The dosimetric effect of such geometric errors was determined as a function of several variables: response time (0-0.6 s), beam energy (6/18 MV), treatment delivery (3D/4D), treatment type (conformal/IMRT), beam direction (AP/PA), and breathing training type (free breathing/audio instruction/visual feedback). Dose difference and distance-to-agreement analysis was employed to quantify results. Based on our data, the dosimetric impact of prediction (a) increased with response time, (b) was larger for 3D radiation therapy as compared with 4D radiation therapy, (c) was relatively insensitive to change in beam energy and beam direction, (d) was greater for IMRT distributions as compared with conformal distributions, (e) was smaller than the dosimetric impact of latency, and (f) was greatest for respiration motion with audio instructions, followed by visual feedback and free breathing. Geometric errors of prediction that occur during 4D radiation delivery introduce dosimetric errors that are dependent on several factors, such as response time, treatment-delivery type, and beam energy. Even for relatively small response times of 0.6 s into the future, dosimetric errors due to prediction could approach delivery errors when respiratory motion is not accounted for at all. To reduce the dosimetric impact, better predictive models and/or shorter response times are required.
Resumo:
PURPOSE: Activation of the double-stranded RNA-activated protein kinase (PKR) leads to the induction of various pathways including the down-regulation of translation through phosphorylation of the eukaryotic translation initiation factor 2alpha (eIF-2alpha). There have been no reports to date about the role of PKR in radiation sensitivity. EXPERIMENTAL DESIGN: A clonogenic survival assay was used to investigate the sensitivity of PKR mouse embryo fibroblasts (MEF) to radiation therapy. 2-Aminopurine (2-AP), a chemical inhibitor of PKR, was used to inhibit PKR activation. Nuclear factor-kappaB (NF-kappaB) activation was assessed by electrophoretic mobility shift assay (EMSA). Expression of PKR and downstream targets was examined by Western blot analysis and immunofluorescence. RESULTS: Ionizing radiation leads to dose- and time-dependent increases in PKR expression and function that contributes to increased cellular radiation resistance as shown by clonogenic survival and terminal nucleotidyl transferase-mediated nick end labeling (TUNEL) apoptosis assays. Specific inhibition of PKR with the chemical inhibitor 2-AP restores radiation sensitivity. Plasmid transfection of the PKR wild-type (wt) gene into PKR(-/-) MEFs leads to increased radiation resistance. The protective effect of PKR to radiation may be mediated in part through NF-kappaB and Akt because both NF-kappaB and Akt are activated after ionizing radiation in PKR+/+ but not PKR-/- cells. CONCLUSIONS: We suggest a novel role for PKR as a mediator of radiation resistance modulated in part through the protective effects of NF-kappaB and Akt activation. The modification of PKR activity may be a novel strategy in the future to overcome radiation resistance.
Resumo:
CONTEXT Aims of bladder preservation in muscle-invasive bladder cancer (MIBC) are to offer a quality-of-life advantage and avoid potential morbidity or mortality of radical cystectomy (RC) without compromising oncologic outcomes. Because of the lack of a completed randomised controlled trial, oncologic equivalence of bladder preservation modality treatments compared with RC remains unknown. OBJECTIVE This systematic review sought to assess the modern bladder-preservation treatment modalities, focusing on trimodal therapy (TMT) in MIBC. EVIDENCE ACQUISITION A systematic literature search in the PubMed and Cochrane databases was performed from 1980 to July 2013. EVIDENCE SYNTHESIS Optimal bladder-preservation treatment includes a safe transurethral resection of the bladder tumour as complete as possible followed by radiation therapy (RT) with concurrent radiosensitising chemotherapy. A standard radiation schedule includes external-beam RT to the bladder and limited pelvic lymph nodes to an initial dose of 40Gy, with a boost to the whole bladder to 54Gy and a further tumour boost to a total dose of 64-65Gy. Radiosensitising chemotherapy with phase 3 trial evidence in support exists for cisplatin and mitomycin C plus 5-fluorouracil. A cystoscopic assessment with systematic rebiopsy should be performed at TMT completion or early after TMT induction. Thus, nonresponders are identified early to promptly offer salvage RC. The 5-yr cancer-specific survival and overall survival rates range from 50% to 82% and from 36% to 74%, respectively, with salvage cystectomy rates of 25-30%. There are no definitive data to support the benefit of using of neoadjuvant or adjuvant chemotherapy. Critical to good outcomes is proper patient selection. The best cancers eligible for bladder preservation are those with low-volume T2 disease without hydronephrosis or extensive carcinoma in situ. CONCLUSIONS A growing body of accumulated data suggests that bladder preservation with TMT leads to acceptable outcomes and therefore may be considered a reasonable treatment option in well-selected patients. PATIENT SUMMARY Treatment based on a combination of resection, chemotherapy, and radiotherapy as bladder-sparing strategies may be considered as a reasonable treatment option in properly selected patients.
Resumo:
Purpose: The rapid distal falloff of a proton beam allows for sparing of normal tissues distal to the target. However proton beams that aim directly towards critical structures are avoided due to concerns of range uncertainties, such as CT number conversion and anatomy variations. We propose to eliminate range uncertainty and enable prostate treatment with a single anterior beam by detecting the proton’s range at the prostate-rectal interface and adaptively adjusting the range in vivo and in real-time. Materials and Methods: A prototype device, consisting of an endorectal liquid scintillation detector and dual-inverted Lucite wedges for range compensation, was designed to test the feasibility and accuracy of the technique. Liquid scintillation filled volume was fitted with optical fiber and placed inside the rectum of an anthropomorphic pelvic phantom. Photodiode-generated current signal was generated as a function of proton beam distal depth, and the spatial resolution of this technique was calculated by relating the variance in detecting proton spills to its maximum penetration depth. The relative water-equivalent thickness of the wedges was measured in a water phantom and prospectively tested to determine the accuracy of range corrections. Treatment simulation studies were performed to test the potential dosimetric benefit in sparing the rectum. Results: The spatial resolution of the detector in phantom measurement was 0.5 mm. The precision of the range correction was 0.04 mm. The residual margin to ensure CTV coverage was 1.1 mm. The composite distal margin for 95% treatment confidence was 2.4 mm. Planning studies based on a previously estimated 2mm margin (90% treatment confidence) for 27 patients showed a rectal sparing up to 51% at 70 Gy and 57% at 40 Gy relative to IMRT and bilateral proton treatment. Conclusion: We demonstrated the feasibility of our design. Use of this technique allows for proton treatment using a single anterior beam, significantly reducing the rectal dose.
Resumo:
Proton radiation therapy is gaining popularity because of the unique characteristics of its dose distribution, e.g., high dose-gradient at the distal end of the percentage-depth-dose curve (known as the Bragg peak). The high dose-gradient offers the possibility of delivering high dose to the target while still sparing critical organs distal to the target. However, the high dose-gradient is a double-edged sword: a small shift of the highly conformal high-dose area can cause the target to be substantially under-dosed or the critical organs to be substantially over-dosed. Because of that, large margins are required in treatment planning to ensure adequate dose coverage of the target, which prevents us from realizing the full potential of proton beams. Therefore, it is critical to reduce uncertainties in the proton radiation therapy. One major uncertainty in a proton treatment is the range uncertainty related to the estimation of proton stopping power ratio (SPR) distribution inside a patient. The SPR distribution inside a patient is required to account for tissue heterogeneities when calculating dose distribution inside the patient. In current clinical practice, the SPR distribution inside a patient is estimated from the patient’s treatment planning computed tomography (CT) images based on the CT number-to-SPR calibration curve. The SPR derived from a single CT number carries large uncertainties in the presence of human tissue composition variations, which is the major drawback of the current SPR estimation method. We propose to solve this problem by using dual energy CT (DECT) and hypothesize that the range uncertainty can be reduced by a factor of two from currently used value of 3.5%. A MATLAB program was developed to calculate the electron density ratio (EDR) and effective atomic number (EAN) from two CT measurements of the same object. An empirical relationship was discovered between mean excitation energies and EANs existing in human body tissues. With the MATLAB program and the empirical relationship, a DECT-based method was successfully developed to derive SPRs for human body tissues (the DECT method). The DECT method is more robust against the uncertainties in human tissues compositions than the current single-CT-based method, because the DECT method incorporated both density and elemental composition information in the SPR estimation. Furthermore, we studied practical limitations of the DECT method. We found that the accuracy of the DECT method using conventional kV-kV x-ray pair is susceptible to CT number variations, which compromises the theoretical advantage of the DECT method. Our solution to this problem is to use a different x-ray pair for the DECT. The accuracy of the DECT method using different combinations of x-ray energies, i.e., the kV-kV, kV-MV and MV-MV pair, was compared using the measured imaging uncertainties for each case. The kV-MV DECT was found to be the most robust against CT number variations. In addition, we studied how uncertainties propagate through the DECT calculation, and found general principles of selecting x-ray pairs for the DECT method to minimize its sensitivity to CT number variations. The uncertainties in SPRs estimated using the kV-MV DECT were analyzed further and compared to those using the stoichiometric method. The uncertainties in SPR estimation can be divided into five categories according to their origins: the inherent uncertainty, the DECT modeling uncertainty, the CT imaging uncertainty, the uncertainty in the mean excitation energy, and SPR variation with proton energy. Additionally, human body tissues were divided into three tissue groups – low density (lung) tissues, soft tissues and bone tissues. The uncertainties were estimated separately because their uncertainties were different under each condition. An estimate of the composite range uncertainty (2s) was determined for three tumor sites – prostate, lung, and head-and-neck, by combining the uncertainty estimates of all three tissue groups, weighted by their proportions along typical beam path for each treatment site. In conclusion, the DECT method holds theoretical advantages in estimating SPRs for human tissues over the current single-CT-based method. Using existing imaging techniques, the kV-MV DECT approach was capable of reducing the range uncertainty from the currently used value of 3.5% to 1.9%-2.3%, but it is short to reach our original goal of reducing the range uncertainty by a factor of two. The dominant source of uncertainties in the kV-MV DECT was the uncertainties in CT imaging, especially in MV CT imaging. Further reduction in beam hardening effect, the impact of scatter, out-of-field object etc. would reduce the Hounsfeld Unit variations in CT imaging. The kV-MV DECT still has the potential to reduce the range uncertainty further.
Resumo:
Proton therapy has become an increasingly more common method of radiation therapy, with the dose sparing to distal tissue making it an appealing option, particularly for treatment of brain tumors. This study sought to develop a head phantom for the Radiological Physics Center (RPC), the first to be used for credentialing of institutions wishing to participate in clinical trials involving brain tumor treatment of proton therapy. It was hypothesized that a head phantom could be created for the evaluation of proton therapy treatment procedures (treatment simulation, planning, and delivery) to assure agreement between the measured dose and calculated dose within ±5%/3mm with a reproducibility of ±3%. The relative stopping power (RSP) and Hounsfield Units (HU) were measured for potential phantom materials and a human skull was cast in tissue-equivalent Alderson material (RLSP 1.00, HU 16) with anatomical airways and a cylindrical hole for imaging and dosimetry inserts drilled into the phantom material. Two treatment plans, proton passive scattering and proton spot scanning, were created. Thermoluminescent dosimeters (TLDs) and film were loaded into the phantom dosimetry insert. Each treatment plan was delivered three separate times. Each treatment plan passed our 5%/3mm criteria, with a reproducibility of ±3%. The hypothesis was accepted and the phantom was found to be suitable for remote audits of proton therapy treatment facilities.
Resumo:
The prognosis for lung cancer patients remains poor. Five year survival rates have been reported to be 15%. Studies have shown that dose escalation to the tumor can lead to better local control and subsequently better overall survival. However, dose to lung tumor is limited by normal tissue toxicity. The most prevalent thoracic toxicity is radiation pneumonitis. In order to determine a safe dose that can be delivered to the healthy lung, researchers have turned to mathematical models predicting the rate of radiation pneumonitis. However, these models rely on simple metrics based on the dose-volume histogram and are not yet accurate enough to be used for dose escalation trials. The purpose of this work was to improve the fit of predictive risk models for radiation pneumonitis and to show the dosimetric benefit of using the models to guide patient treatment planning. The study was divided into 3 specific aims. The first two specifics aims were focused on improving the fit of the predictive model. In Specific Aim 1 we incorporated information about the spatial location of the lung dose distribution into a predictive model. In Specific Aim 2 we incorporated ventilation-based functional information into a predictive pneumonitis model. In the third specific aim a proof of principle virtual simulation was performed where a model-determined limit was used to scale the prescription dose. The data showed that for our patient cohort, the fit of the model to the data was not improved by incorporating spatial information. Although we were not able to achieve a significant improvement in model fit using pre-treatment ventilation, we show some promising results indicating that ventilation imaging can provide useful information about lung function in lung cancer patients. The virtual simulation trial demonstrated that using a personalized lung dose limit derived from a predictive model will result in a different prescription than what was achieved with the clinically used plan; thus demonstrating the utility of a normal tissue toxicity model in personalizing the prescription dose.
Resumo:
We examined outcomes and trends in surgery and radiation use for patients with locally advanced esophageal cancer, for whom optimal treatment isn't clear. Trends in surgery and radiation for patients with T1-T3N1M0 squamous cell or adenocarcinoma of the mid or distal esophagus in the Surveillance, Epidemiology, and End Results database from 1998 to 2008 were analyzed using generalized linear models including year as predictor; Surveillance, Epidemiology, and End Results doesn't record chemotherapy data. Local treatment was unimodal if patients had only surgery or radiation and bimodal if they had both. Five-year cancer-specific survival (CSS) and overall survival (OS) were analyzed using propensity-score adjusted Cox proportional-hazard models. Overall 5-year survival for the 3295 patients identified (mean age 65.1 years, standard deviation 11.0) was 18.9% (95% confidence interval: 17.3-20.7). Local treatment was bimodal for 1274 (38.7%) and unimodal for 2021 (61.3%) patients; 1325 (40.2%) had radiation alone and 696 (21.1%) underwent only surgery. The use of bimodal therapy (32.8-42.5%, P = 0.01) and radiation alone (29.3-44.5%, P < 0.001) increased significantly from 1998 to 2008. Bimodal therapy predicted improved CSS (hazard ratios [HR]: 0.68, P < 0.001) and OS (HR: 0.58, P < 0.001) compared with unimodal therapy. For the first 7 months (before survival curve crossing), CSS after radiation therapy alone was similar to surgery alone (HR: 0.86, P = 0.12) while OS was worse for surgery only (HR: 0.70, P = 0.001). However, worse CSS (HR: 1.43, P < 0.001) and OS (HR: 1.46, P < 0.001) after that initial timeframe were found for radiation therapy only. The use of radiation to treat locally advanced mid and distal esophageal cancers increased from 1998 to 2008. Survival was best when both surgery and radiation were used.
Resumo:
We herein present a patient undergoing selective internal radiation therapy with an almost normal lung shunt fraction of 11.5 %, developing histologically proven radiation pneumonitis. Due to a predominance of pulmonary consolidations in the right lower lung and its proximity to a large liver metastases located in the dome of the right liver lobe a Monte Carlo simulation was performed to estimate the effect of direct irradiation of the lung parenchyma. According to our calculations direct irradiation seems negligible and RP is almost exclusively due to ectopic draining of radioactive spheres.
Resumo:
PURPOSE The safe clinical implementation of pencil beam scanning (PBS) proton therapy for lung tumors is complicated by the delivery uncertainties caused by breathing motion. The purpose of this feasibility study was to investigate whether a voluntary breath-hold technique could limit the delivery uncertainties resulting from interfractional motion. METHODS AND MATERIALS Data from 15 patients with peripheral lung tumors previously treated with stereotactic radiation therapy were included in this study. The patients had 1 computed tomographic (CT) scan in voluntary breath-hold acquired before treatment and 3 scans during the treatment course. PBS proton treatment plans with 2 fields (2F) and 3 fields (3F), respectively, were calculated based on the planning CT scan and subsequently recalculated on the 3 repeated CT scans. Recalculated plans were considered robust if the V95% (volume receiving ≥95% of the prescribed dose) of the gross target volume (GTV) was within 5% of what was expected from the planning CT data throughout the simulated treatment. RESULTS A total of 14/15 simulated treatments for both 2F and 3F met the robustness criteria. Reduced V95% was associated with baseline shifts (2F, P=.056; 3F, P=.008) and tumor size (2F, P=.025; 3F, P=.025). Smaller tumors with large baseline shifts were also at risk for reduced V95% (interaction term baseline/size: 2F, P=.005; 3F, P=.002). CONCLUSIONS The breath-hold approach is a realistic clinical option for treating lung tumors with PBS proton therapy. Potential risk factors for reduced V95% are small targets in combination with large baseline shifts. On the basis of these results, the baseline shift of the tumor should be monitored (eg, through image guided therapy), and appropriate measures should be taken accordingly. The intrafractional motion needs to be investigated to confirm that the breath-hold approach is robust.
Resumo:
BACKGROUND Newly diagnosed WHO grade II-III or any WHO grade recurrent meningioma exhibit an aggressive behavior and thus are considered as high- or intermediate risk tumors. Given the unsatisfactory rates of disease control and survival after primary or adjuvant radiation therapy, optimization of treatment strategies is needed. We investigated the potential of dose-painting intensity-modulated proton beam-therapy (IMPT) for intermediate- and high-risk meningioma. MATERIAL AND METHODS Imaging data from five patients undergoing proton beam-therapy were used. The dose-painting target was defined using [68]Ga-[1,4,7,10-tetraazacyclododecane tetraacetic acid]- d-Phe(1),Tyr(3)-octreotate ([68]Ga-DOTATATE)-positron emission tomography (PET) in target delineation. IMPT and photon intensity-modulated radiation therapy (IMRT) treatment plans were generated for each patient using an in-house developed treatment planning system (TPS) supporting spot-scanning technology and a commercial TPS, respectively. Doses of 66 Gy (2.2 Gy/fraction) and 54 Gy (1.8 Gy/fraction) were prescribed to the PET-based planning target volume (PTVPET) and the union of PET- and anatomical imaging-based PTV, respectively, in 30 fractions, using simultaneous integrated boost. RESULTS Dose coverage of the PTVsPET was equally good or slightly better in IMPT plans: dose inhomogeneity was 10 ± 3% in the IMPT plans vs. 13 ± 1% in the IMRT plans (p = 0.33). The brain Dmean and brainstem D50 were small in the IMPT plans: 26.5 ± 1.5 Gy(RBE) and 0.002 ± 0.0 Gy(RBE), respectively, vs. 29.5 ± 1.5 Gy (p = 0.001) and 7.5 ± 11.1 Gy (p = 0.02) for the IMRT plans, respectively. The doses delivered to the optic structures were also decreased with IMPT. CONCLUSIONS Dose-painting IMPT is technically feasible using currently available planning tools and resulted in dose conformity of the dose-painted target comparable to IMRT with a significant reduction of radiation dose delivered to the brain, brainstem and optic apparatus. Dose escalation with IMPT may improve tumor control and decrease radiation-induced toxicity.
Resumo:
External beam radiation therapy is used to treat nearly half of the more than 200,000 new cases of prostate cancer diagnosed in the United States each year. During a radiation therapy treatment, healthy tissues in the path of the therapeutic beam are exposed to high doses. In addition, the whole body is exposed to a low-dose bath of unwanted scatter radiation from the pelvis and leakage radiation from the treatment unit. As a result, survivors of radiation therapy for prostate cancer face an elevated risk of developing a radiogenic second cancer. Recently, proton therapy has been shown to reduce the dose delivered by the therapeutic beam to normal tissues during treatment compared to intensity modulated x-ray therapy (IMXT, the current standard of care). However, the magnitude of stray radiation doses from proton therapy, and their impact on this incidence of radiogenic second cancers, was not known. ^ The risk of a radiogenic second cancer following proton therapy for prostate cancer relative to IMXT was determined for 3 patients of large, median, and small anatomical stature. Doses delivered to healthy tissues from the therapeutic beam were obtained from treatment planning system calculations. Stray doses from IMXT were taken from the literature, while stray doses from proton therapy were simulated using a Monte Carlo model of a passive scattering treatment unit and an anthropomorphic phantom. Baseline risk models were taken from the Biological Effects of Ionizing Radiation VII report. A sensitivity analysis was conducted to characterize the uncertainty of risk calculations to uncertainties in the risk model, the relative biological effectiveness (RBE) of neutrons for carcinogenesis, and inter-patient anatomical variations. ^ The risk projections revealed that proton therapy carries a lower risk for radiogenic second cancer incidence following prostate irradiation compared to IMXT. The sensitivity analysis revealed that the results of the risk analysis depended only weakly on uncertainties in the risk model and inter-patient variations. Second cancer risks were sensitive to changes in the RBE of neutrons. However, the findings of the study were qualitatively consistent for all patient sizes and risk models considered, and for all neutron RBE values less than 100. ^
Resumo:
Radiation therapy has been used as an effective treatment for malignancies in pediatric patients. However, in many cases, the side effects of radiation diminish these patients’ quality of life. In order to develop strategies to minimize radiogenic complications, one must first quantitatively estimate pediatric patients’ relative risk for radiogenic late effects, which has not become feasible till recently because of the calculational complexity. The goals of this work were to calculate the dose delivered to tissues and organs in pediatric patients during contemporary photon and proton radiotherapies; to estimate the corresponding risk of radiogenic second cancer and cardiac toxicity based on the calculated doses and on dose-risk models from the literature; to test for the statistical significance of the difference between predicted risks after photon versus proton radiotherapies; and to provide a prototype of an evidence-based approach to selecting treatment modalities for pediatric patients, taking second cancer and cardiac toxicity into account. The results showed that proton therapy confers a lower predicted risk of radiogenic second cancer, and lower risks of radiogenic cardiac toxicities, compared to photon therapy. An uncertainty analysis revealed that the qualitative findings of this study are insensitive to changes in a wide variety of host and treatment related factors.
Resumo:
Purpose: The effectiveness of synchronous carboplatin, etoposide, and radiation therapy was prospectively assessed in a group of patients with high-risk Merkel cell carcinoma (MCC) of the skin. Patients and Methods: Patients were eligible if they had disease localized to the primary site and nodes, and were required to have at least one of the following high risk features: recurrence after initial therapy, involved nodes, primary tumor size greater than 1 cm, gross residual disease after surgery, or occult primary with nodes. Radiation was delivered to the primary site and nodes to a dose of 50 Gy in 25 fractions over 5 weeks and synchronous carboplatin (area under the curve, 4.5) and intravenous etoposide 80 mg/m(2) days 1 to 3 was given in weeks 1, 4, 7, and 10. The median age of the group was 67 (range, 43-86) years, and there were 39 males and 14 females. Involved nodes (stage II) were present in 33 cases (62%). The sites involved were head and neck (22 patients), occult primary (13 patients), upper limb (eight patients), lower limb (eight patients), and trunk (two patients). Results: Fifty-three patients were entered between 1996 and 2001. The median potential follow-up was 48 months. There were no treatment related deaths. The 3-year overall survival, locoregional control, and distant control were 76%, 75%, and 76%, respectively. Tumor site and the presence of nodes were factors that were predictive for local control and survival. Multivariate analysis indicated that the major factor influencing survival was the presence of nodes; however, this was not a significant factor in locoregional control. Conclusion: High levels of locoregional control and survival have been achieved with the addition of chemotherapy to radiation treatment for high-risk MCC of the skin. The role of chemoradiotherapy for high-risk MCC warrants further investigation. (C) 2003 by American Society of Clinical Oncology.