925 resultados para PP NANOCOMPOSITES
Resumo:
El primer tercio del siglo V representó un momento muy convulso en la historia del Imperio Romano. Algunas zonas, como la Galia, se vieron inmersas en una crisis provocada principalmente por las devastaciones que poblaciones bárbaras estaban llevando a cabo, desde inicios de la centuria, en casi todo su territorio. El foedus pactado por el Imperio con los visigodos, por el cual éstos se establecían en Aquitania (418), lejos de representar una solución no hizo sino aumentar los problemas de convivencia entre galorromanos y germanos. El pesimismo cundió entre la población autóctona: la teología eusebiana que presentaba al Dios cristiano como garante de los bienes materiales a través de su culto ―siguiendo la tradicional ideología del do ut des― había fallado, y muchas conciencias cristianas se hundieron en la angustia al preg
Resumo:
A study of D +π−, D 0π+ and D ∗+π− final states is performed using pp collision data, corresponding to an integrated luminosity of 1.0 fb−1, collected at a centre-of-mass energy of 7 TeV with the LHCb detector. The D 1(2420)0 resonance is observed in the D ∗+π− final state and the D∗2(2460) resonance is observed in the D +π−, D 0π+ and D ∗+π− final states. For both resonances, their properties and spin-parity assignments are obtained. In addition, two natural parity and two unnatural parity resonances are observed in the mass region between 2500 and 2800 MeV. Further structures in the region around 3000 MeV are observed in all the D ∗+π−, D +π− and D 0π+ final states.
Resumo:
Recensión al libro de Roberto Andorno, Bioética y dignidad humana, en el cual el autor, actualmente investigador de la Facultad de Derecho de Zurich, y exmiembro del Comité Internacional de Bioética de la UNESCO, nos ofrece la segunda edición de este interesante ensayo que ya fue publicado en 1998, acerca de los fundamentos de la bioética, el concepto de persona, las consecuencias de determinadas visiones utilitaristas de la ciencia, realizando un recorrido acerca de los dilemas bioéticos que se presentan en los diversos momentos de la vida de la persona.
Resumo:
La personalitat de Pablo Picasso es una de les més estudiades a la història de l"art, Per aquest motiu són destacables els estudis que hi ha dedicat la Dra. Conxita Boncompte, una aportació que te, a més el valor afegit, que és el resultat d"una tesi doctoral presentada a la Universitat de Barcelona. El llarg article, 24 pàgines de text amb 108 notes documentals, ha estat publicat a revista Goya, editada per la Fundación Lázaro Galdeano de Madrid, i una de les més prestigioses en llengua castellana en Història de l"Art.
Resumo:
Article d'opinió sobre la tensió entre mèrit i igualtat de la Llei de qualitat de l’educació del Partit Popular
Resumo:
Bionanocomposites derived from poly(L-Lactide) (PLLA) were reinforced with chemically modified cellulose nanocrystals (m-CNCs). The effects of these modified cellulose nanoparticles on the mechanical and hydrolytic degradation behavior of polylactide were studied. The m-CNCs were prepared by a method in which hydrolysis of cellulose chains is performed simultaneously with the esterification of hydroxyl groups to produce modified nanocrystals with ester groups. FTIR, elemental analysis, TEM, XRD and contact angle measurements were used to confirm and characterize the chemical modifications of the m-CNCs. These bionanocomposites gave considerably better mechanical properties than neat PLLA based on an approximately 100% increase in tensile strength. Due to the hydrophobic properties of the esterified nanocrystals incorporated into a polymer matrix, it was also demonstrated that a small amount of m-CNCs could lead to a remarkable decrease in the hydrolytic degradation rate of the biopolymer. In addition, the m-CNCs considerably delay the degradation of the nanocomposite by providing a physical barrier that prevents the permeation of water, which thus hinders the overall absorption of water into the matrix. The results obtained in this study show the nanocrystals can be used to reinforce polylactides and fine-tune their degradation rates in moist or physiological environments.
Resumo:
Cellulose fiber-silica nanocomposites with novel mechanical, chemical and thermal properties have potential to be widely applied in different area. Monodispered silica nanoparticles play an important role in enhancing hybrids properties of hardness, strength, thermal stability etc. On the other hand, cellulose is one of the world’s most abundant and renewable polymers and possesses several unique properties required in many areas and biomedicine. The aim of this master thesis is to study if silica particles from reaction of sodium silicate and sulphuric acid can be adsorbed onto cellulose fiber surfaces via in situ growth. First, nanosilica particles were synthesized. Effect of pH and silica contents were tested. In theoretical part, introduction of silica, methods of preparation of nanosilica from sodium silicate, effect factors and additives were discussed. Then, cellulose fiber-silica nanocomposites were synthesis via route from sodium silicate and route silicic acid. In the experiment of route from sodium silicate, the effects of types of sodium silicate, pH and target ratio of silica to fiber were investigated. From another aspect, the effects of types of sodium silicate, fiber concentration in mixture solution and target ratio of silica to fiber were tested in the experiment of route from silicic acid. Samples were investigated via zeta potential measurement, particle size distribution, ash content measurement and Scanning Electron Microscopy (SEM). The Results of the experiment of preparing silica sol were that the particle size of silica sol was smaller prepared in pH 11.7 than that prepared in pH 9.3. Then in the experiment of synthesis of cellulose fiber-silica nanocomposites, it was concluded that the zeta potential of all the samples were around -16 mV and the highest ash content of all the samples was only 1.4%. The results of SEM images showed only a few of silica particles could be observed on the fiber surface, which corresponded to the value of ash content measurement.
Resumo:
The driving forces for current research of flame retardants are increased fire safety in combination with flame retardant formulations that fulfill the criteria of sustainable production and products. In recent years, important questions about the environmental safety of antimony, and in particular, brominated flame retardants have been raised. As a consequence of this, the current doctoral thesis work describes efforts to develop new halogen-free flame retardants that are based on various radical generators and phosphorous compounds. The investigation was first focused on compounds that are capable of generating alkyl radicals in order to study their role on flame retardancy of polypropylene. The family of azoalkanes was selected as the cleanest and most convenient source of free alkyl radicals. Therefore, a number of symmetrical and unsymmetrical azoalkanes of the general formula R-N=N-R’ were prepared. The experimental results show that in the series of different sized azocycloalkanes the flame retardant efficacy decreased in the following order: R = R´= cyclohexyl > cyclopentyl > cyclobutyl > cyclooctanyl > cyclododecanyl. However, in the series of aliphatic azoalkanes compounds, the efficacy decreased as followed: R = R´= n-alkyl > tert-butyl > tert-octyl. The most striking difference in flame retardant efficacy was observed in thick polypropylene plaques of 1 mm, e.g. azocyclohexane (AZO) had a much better flame retardant performance than did the commercial reference FR (Flamestab® NOR116) in thick PP sections. In addition, some of the prepared azoalkane flame retardants e.g. 4’4- bis(cyclohexylazocyclohexyl) methane (BISAZO) exhibited non-burning dripping behavior. Extrusion coating experiments of flame retarded low density polyethylene (LDPE) onto a standard machine finished Kraft paper were carried out in order to investigate the potential of azoalkanes in multilayer facings. The results show that azocyclohexane (AZO) and 4’4-bis (cyclohexylazocyclohexyl) methane (BISAZO) can significantly improve the flame retardant properties of low density polyethylene coated paper already at 0.5 wt.% loadings, provided that the maximum extrusion temperature of 260 oC is not exceeded and coating weight is kept low at 13 g/m2. In addition, various triazene-based flame retardants (RN1=N2-N3R’R’’) were prepared. For example, polypropylene samples containing a very low concentration of only 0.5 wt.% of bis- 4’4’-(3’3’-dimethyltriazene) diphenyl ether and other triazenes passed the DIN 4102-1 test with B2 classification. It is noteworthy that no burning dripping could be detected and the average burning times were very short with exceptionally low weight losses. Therefore, triazene compounds constitute a new and interesting family of radical generators for flame retarding of polymeric materials. The high flame retardant potential of triazenes can be attributed to their ability to generate various types of radicals during their thermal decomposition. According to thermogravimetric analysis/Fourier transform infrared spectroscopy/MS analysis, triazene units are homolytically cleaved into various aminyl, resonance-stabilized aryl radicals, and different CH fragments with simultaneous evolution of elemental nitrogen. Furthermore, the potential of thirteen aliphatic, aromatic, thiuram and heterocyclic substituted organic disulfide derivatives of the general formula R-S-S-R’ as a new group of halogen-free flame retardants for polypropylene films have been investigated. According to the DIN 4102- 1 standard ignitibility test, for the first time it has been demonstrated that many of the disulfides alone can effectively provide flame retardancy and self-extinguishing properties to polypropylene films at already very low concentrations of 0.5 wt.%. For the disulfide family, the highest FR activity was recorded for 5’5’-dithiobis (2-nitrobenzoic acid). Very low values for burning length (53 mm) and burning time (10 s) reflect significantly increased fire retardant performance of this disulfide compared to other compounds in this series as well as to Flamestab® NOR116. Finally, two new, phosphorus-based flame retardants were synthesized: P’P-diphenyl phosphinic hydrazide (PAH) and melamine phenyl phosphonate (MPhP). The DIN 4102-1 test and the more stringent UL94 vertical burning test (UL94 V) were used to assess the formulations ability to extinguish a flame once ignited. A very strong synergistic effect with azoalkanes was found, i.e. in combination with these radical generators even UL94 V0 rate could be obtained.
Resumo:
We have developed a software called pp-Blast that uses the publicly available Blast package and PVM (parallel virtual machine) to partition a multi-sequence query across a set of nodes with replicated or shared databases. Benchmark tests show that pp-Blast running in a cluster of 14 PCs outperformed conventional Blast running in large servers. In addition, using pp-Blast and the cluster we were able to map all human cDNAs onto the draft of the human genome in less than 6 days. We propose here that the cost/benefit ratio of pp-Blast makes it appropriate for large-scale sequence analysis. The source code and configuration files for pp-Blast are available at http://www.ludwig.org.br/biocomp/tools/pp-blast.
Resumo:
Carbon nanotubes are highly versatile materials; new applications using them are continuously being developed. Special attention is being dedicated to the possible use of multiwalled carbon nanotubes in biomaterials contacting with bone. However, carbon nanotubes are also controversial in regards to effects exerted on living organisms. Carbon nanotubes can be used to improve the tribological properties of polymer/composite materials. Ultrahigh molecular weight polyethylene (UHMWPE) is a polymer widely used in orthopedic applications that imply wear and particle generation. We describe here the response of human osteoblast-like MG63 cells after 6 days of culture in contact with artificially generated particles from both UHMWPE polymer and multiwalled carbon nanotubes (MWCNT)/UHMWPE nanocomposites. This novel composite has superior wear behavior, having thus the potential to reduce the number of revision hip arthroplasty surgeries required by wear failure of acetabular cups and diminish particle-induced osteolysis. The results of an in vitro study of viability and proliferation and interleukin-6 (IL-6) production suggest good cytocompatibility, similar to that of conventional UHMWPE (WST-1 assay results are reported as percentage of control ± SD: UHMWPE = 96.19 ± 7.92, MWCNT/UHMWPE = 97.92 ± 8.29%; total protein: control = 139.73 ± 10.78, UHMWPE = 137.07 ± 6.17, MWCNT/UHMWPE = 163.29 ± 11.81 µg/mL; IL-6: control = 90.93 ± 10.30, UHMWPE = 92.52 ± 11.02, MWCNT/UHMWPE = 108.99 ± 9.90 pg/mL). Standard cell culture conditions were considered as control. These results, especially the absence of significant elevation in the osteolysis inductor IL-6 values, reinforce the potential of this superior wear-resistant composite for future orthopedic applications, when compared to traditional UHMWPE.
Resumo:
The present Master’s thesis presents theoretical description of the extraodinary behavior of the confined Indium nanoparticles. Superconducting properties of nanoparticles and nanocomposites are extensively reviewed. Special attention has been paid to phase fluctuation, shell and disordered effects. The experimental data has been obtained and provided by Dmitry Shamshur from Ioffe Physical Technical Institute. The investigated material represents a highly ordered system of silicate spheres filled with indium metal, where the In nanoparticles are interconnected between each other. Bulk indium is a superconductor with crititcal superconducting temperature Tc0 = 3:41 K. But indium nanoparticles exhibit different behavior, the critical temperature rise by approximately 20% up to 4.15 K. As well as transition of the indium particles to type-II superconductivity with high critical magnetic fields. Such diversity is explained by finite size effects which originate from nanosize of the samples.
Resumo:
ZrO2 nanocomposites were investigated considering their perspective application in hygroelectric power elements. Scanning probe microscopy (SPM) techniques allowed to visualize the surface topography and electrical properties. In this work was compared spacial charge behaviour of sample in humid and dry air conditions. Also different SPM modes were compared. Kelvin probe force microscopy (KPFM) was applied to characterize the spacial charge distribution on surface of the sample. Measurements showed, that trapped charge is not dissipated and can be manipulated with low voltages. Humidity influence on the electric potential of the sample was shown.