979 resultados para PORE FORMERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three archived core samples from boreholes DGR-4, DGR-5 and DGR-6 from the Salina F Unit, Queenston Formation and the Georgian Bay Formation were subjected to squeezing tests at pressures of up to 500 MPa. Two samples did not yield any water, while a total of 0.88 g pore water was obtained from a clay-rich sample from the Blue Mountain Formation (water content = 2.8 wt.%, porosity = 8 %). This water mass was sufficient for a full chemical and water-isotope analysis – the first direct determination of pore-water composition in rocks from the DGR boreholes. The results are generally in reasonable agreement with those of independent methods, or the observed differences can be explained. Ancillary investigations included the determination of water content, densities and mineralogy, aqueous extraction of squeezed cores, and SEM investigations to characterise the microtexture of unsqueezed and squeezed rock materials. It is concluded that squeezing is a promising method of pore-water extraction and characterisation and is recommended as an alternative method for future studies. Selection criteria for potentially squeezable samples include high clay-mineral content (correlating in a high water content) and low carbonate content (low stiffness, limited cementation). Potential artefacts of the method, such as ion filtration or pressure solution, should be explored and quantified in future efforts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most available studies of interconnected matrix porosity of crystalline rocks are based on laboratory investigations; that is, work on samples that have undergone stress relaxation and were affected by drilling and sample preparation. The extrapolation of the results to in situ conditions is therefore associated with considerable uncertainty, and this was the motivation to conduct the ‘in situ Connected Porosity’ experiment at the Grimsel Test Site (Central Swiss Alps). An acrylic resin doped with fluorescent agents was used to impregnate the microporous granitic matrix in situ around an injection borehole, and samples were obtained by overcoring. The 3-D structure of the porespace, represented by microcracks, was studied by U-stage fluorescence microscopy. Petrophysical methods, including the determination of porosity, permeability and P -wave velocity, were also applied. Investigations were conducted both on samples that were impregnated in situ and on non-impregnated samples, so that natural features could be distinguished from artefacts. The investigated deformed granites display complex microcrack populations representing a polyphase deformation at varying conditions. The crack population is dominated by open cleavage cracks in mica and grain boundary cracks. The porosity of non-impregnated samples lies slightly above 1 per cent, which is 2–2.5 times higher than the in situ porosity obtained for impregnated samples. Measurements of seismic velocities (Vp ) on spherical rock samples as a function of confining pressure, spatial direction and water saturation for both non-impregnated and impregnated samples provide further constraints on the distinction between natural and induced crack types. The main conclusions are that (1) an interconnected network of microcracks exists in the whole granitic matrix, irrespective of the distance to ductile and brittle shear zones, and (2) conventional laboratory methods overestimate the matrix porosity. Calculations of contaminant transport through fractured media often rely on matrix diffusion as a retardation mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The VirB/D4 type IV secretion system (T4SS) of Agrobacterium tumefaciens functions to transfer substrates to infected plant cells through assembly of a translocation channel and a surface structure termed a T-pilus. This thesis is focused on identifying contributions of VirB10 to substrate transfer and T-pilus formation through a mutational analysis. VirB10 is a bitopic protein with several domains, including a: (i) cytoplasmic N-terminus, (ii) single transmembrane (TM) α-helix, (iii) proline-rich region (PRR), and (iv) large C-terminal modified β-barrel. I introduced cysteine insertion and substitution mutations throughout the length of VirB10 in order to: (i) test a predicted transmembrane topology, (ii) identify residues/domains contributing to VirB10 stability, oligomerization, and function, and (iii) monitor structural changes accompanying energy activation or substrate translocation. These studies were aided by recent structural resolution of a periplasmic domain of a VirB10 homolog and a ‘core’ complex composed of homologs of VirB10 and two outer membrane associated subunits, VirB7 and VirB9. By use of the substituted cysteine accessibility method (SCAM), I confirmed the bitopic topology of VirB10. Through phenotypic studies of Ala-Cys insertion mutations, I identified “uncoupling” mutations in the TM and β-barrel domains that blocked T-pilus assembly but permitted substrate transfer. I showed that cysteine replacements in the C-terminal periplasmic domain yielded a variety of phenotypes in relation to protein accumulation, oligomerization, substrate transfer, and T-pilus formation. By SCAM, I also gained further evidence that VirB10 adopts different structural states during machine biogenesis. Finally, I showed that VirB10 supports substrate transfer even when its TM domain is extensively mutagenized or substituted with heterologous TM domains. By contrast, specific residues most probably involved in oligomerization of the TM domain are required for biogenesis of the T-pilus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactive and noble gases dissolved in matrix pore water of low permeable crystalline bedrock were successfully extracted and characterized for the fist time based on drillcore samples from the Olkiluoto investigation site (SW Finland). Interaction between matrix pore water and fracture groundwater occurs predominately by diffusion. Changes in the chemical and isotopic composition of gases dissolved in fracture groundwater are transmitted and preserved in the pore water. Absolute concentrations, their ratios and the stable carbon isotope signature of hydrocarbon gases dissolved in pore water give valuable indications about the evolution of these gases in the nearby-flowing fracture groundwaters. Inert noble gases dissolved in matrix pore water and their isotopes combined with their in-situ production and accumulation rates deliver information about the residence time of pore water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix pore water in the connected inter- and intragranular pore space of low-permeable crystalline bedrock interacts with flowing fracture groundwater predominately by diffusion. Based on the slow exchange between the two water reservoirs, matrix pore water acts as an archive of past changes in fracture groundwater compositions and thus of the palaeohydrological history of a site. Matrix pore water of crystalline bedrock from the Olkiluoto investigation site (SW Finland) was characterised using the stable water isotopes (δ18O, δ2H), combined with the concentrations of dissolved chloride and bromide as natural tracers. The comparison of tracer concentrations in pore water and present-day fracture groundwater suggest for the pore water the presence of old, dilute meteoric water components that infiltrated into the fractures during various warm climate stages. These different meteoric components can be discerned based on the diffusion distance between the two reservoirs and be brought into context with the palaeohydrological evolution of the site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The determination of stable isotope contents of pore-water from consolidated argillaceous rocks remains a critical issue. In order to understand the processes involved in techniques developed for acquiring stable isotope compositions of pore-water, a comparative study between different methods was based on core samples of the Tournemire argillite. It concerns two water extraction techniques based on vacuum distillation and two pore-water equilibration techniques (radial diffusion in liquid phase and diffusive exchange in vapor phase). The water-content values obtained from vacuum distillation at 50 °C are always the lowest, on average 8% lower than the values obtained by heating at 105 °C and 17% lower than the values obtained by heating at 150 °C. The amounts of pore-water estimated from vacuum distillation at 105 °C and 150 °C and from radial diffusion method are in good agreement with those determined by heating. On the contrary, the vapor exchange method provides the highest values of water contents. Concerning stable isotope data, a good agreement was found between those obtained by equilibration techniques and those of fracture water, especially for 2H. Vacuum distillation at high temperature (particularly at 150 °C) also provided results consistent with data of fracture fluids. On the other hand, distillation at 50 °C provides a systematic depletion in heavy isotopes (about –20‰ for 2H and –2.7‰ for 18O) that can be modelled by an incomplete Rayleigh-type distillation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pneumolysin (PLY), a key virulence factor of Streptococcus pneumoniae, permeabilizes eukaryotic cells by forming large trans-membrane pores. PLY imposes a puzzling multitude of diverse, often mutually excluding actions on eukaryotic cells. Whereas cytotoxicity of PLY can be directly attributed to the pore-mediated effects, mechanisms that are responsible for the PLY-induced activation of host cells are poorly understood. We show that PLY pores can be repaired and thereby PLY-induced cell death can be prevented. Pore-induced Ca2+ entry from the extracellular milieu is of paramount importance for the initiation of plasmalemmal repair. Nevertheless, active Ca2+ sequestration that prevents excessive Ca2+ elevation during the execution phase of plasmalemmal repair is of no less importance. The efficacy of plasmalemmal repair does not only define the fate of targeted cells but also intensity, duration and repetitiveness of PLY-induced Ca2+ signals in cells that were able to survive after PLY attack. Intracellular Ca2+ dynamics evoked by the combined action of pore formation and their elimination mimic the pattern of receptor-mediated Ca2+ signaling, which is responsible for the activation of host immune responses. Therefore, we postulate that plasmalemmal repair of PLY pores might provoke cellular responses that are similar to those currently ascribed to the receptor-mediated PLY effects. Our data provide new insights into the understanding of the complexity of cellular non-immune defense responses to a major pneumococcal toxin that plays a critical role in the establishment and the progression of life-threatening diseases. Therapies boosting plasmalemmal repair of host cells and their metabolic fitness might prove beneficial for the treatment of pneumococcal infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nematode Caenorhabditis elegans is characterized by many features that make it highly attractive to study nuclear pore complexes (NPCs) and nucleocytoplasmic transport. NPC composition and structure are highly conserved in nematodes and being amenable to a variety of genetic manipulations, key aspects of nuclear envelope dynamics can be observed in great details during breakdown, reassembly, and interphase. In this chapter, we provide an overview of some of the most relevant modern techniques that allow researchers unfamiliar with C. elegans to embark on studies of nucleoporins in an intact organism through its development from zygote to aging adult. We focus on methods relevant to generate loss-of-function phenotypes and their analysis by advanced microscopy. Extensive references to available reagents, such as mutants, transgenic strains, and antibodies are equally useful to scientists with or without prior C. elegans or nucleoporin experience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Argillaceous rocks are considered to be a suitable geological barrier for the long-term containment of wastes. Their efficiency at retarding contaminant migration is assessed using reactive-transport experiments and modeling, the latter requiring a sound understanding of pore-water chemistry. The building of a pore-water model, which is mandatory for laboratory experiments mimicking in situ conditions, requires a detailed knowledge of the rock mineralogy and of minerals at equilibrium with present-day pore waters. Using a combination of petrological, mineralogical, and isotopic studies, the present study focused on the reduced Opalinus Clay formation (Fm) of the Benken borehole (30 km north of Zurich) which is intended for nuclear-waste disposal in Switzerland. A diagenetic sequence is proposed, which serves as a basis for determining the minerals stable in the formation and their textural relationships. Early cementation of dominant calcite, rare dolomite, and pyrite formed by bacterial sulfate reduction, was followed by formation of iron-rich calcite, ankerite, siderite, glauconite, (Ba, Sr) sulfates, and traces of sphalerite and galena. The distribution and abundance of siderite depends heavily on the depositional environment (and consequently on the water column). Benken sediment deposition during Aalenian times corresponds to an offshore environment with the early formation of siderite concretions at the water/sediment interface at the fluctuating boundary between the suboxic iron reduction and the sulfate reduction zones. Diagenetic minerals (carbonates except dolomite, sulfates, silicates) remained stable from their formation to the present. Based on these mineralogical and geochemical data, the mineral assemblage previously used for the geochemical model of the pore waters at Mont Terri may be applied to Benken without significant changes. These further investigations demonstrate the need for detailed mineralogical and geochemical study to refine the model of pore-water chemistry in a clay formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-pressure mechanical squeezing was applied to sample pore waters from a sequence of highly indurated and overconsolidated sedimentary rocks in a drillcore from a deep borehole in NE Switzerland. The rocks are generally rich in clay minerals (28–71 wt.%), with low water contents of 3.5–5.6 wt.%, resulting in extremely low hydraulic conductivities of 10− 14–10− 13 m/s. First pore-water samples could generally be taken at 200 MPa, and further aliquots were obtained at 300, 400 and 500 MPa. Chemical and isotopic compositions of squeezed waters evolve with increasing pressure. Decreasing concentrations of Cl−, Br−, Na+ and K+ are explained by ion filtration due to the collapse of the pore space during squeezing. Increasing concentrations of Ca2 + and Mg2 + are considered to be a consequence of pressure-dependent solubilities of carbonate minerals in combination with sorption/desorption reactions. The pressure dependence was studied by model calculations considering equilibrium with carbonate minerals and the exchanger population on clay surfaces, and the trends observed in the experiments could be confirmed. The compositions of the squeezed waters were compared with results of independent methods, such as aqueous extraction and in-situ sampling of ground and pore waters. On this basis, it is concluded that the chemical and isotopic composition of pore water squeezed at the lowest pressure of 200 MPa closely represents that of the in-situ pore water. The feasibility of sampling pore waters with water contents down to 3.5 wt.% and possibly less opens new perspectives for studies targeted at palaeo-hydrogeological investigations using pore-water compositions in aquitards as geochemical archives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the vacuolar–type H+-ATPase B1 subunit gene ATP6V1B1 cause autosomal–recessive distal renal tubular acidosis (dRTA). We previously identified a single-nucleotide polymorphism (SNP) in the human B1 subunit (c.481G.A; p.E161K) that causes greatly diminished pump function in vitro. To investigate the effect of this SNP on urinary acidification, we conducted a genotype-phenotype analysis of recurrent stone formers in theDallas and Bern kidney stone registries. Of 555 patients examined, 32 (5.8%) were heterozygous for the p.E161K SNP, and the remaining 523 (94.2%) carried two wild–type alleles. After adjustment for sex, age, body mass index, and dietary acid and alkali intake, p.E161K SNP carriers had a nonsignificant tendency to higher urinary pH on a random diet (6.31 versus 6.09; P=0.09). Under an instructed low–Ca and low–Na diet, urinary pH was higher in p.E161K SNP carriers (6.56 versus 6.01; P,0.01). Kidney stones of p.E161K carriers were more likely to contain calcium phosphate than stones of wild-type patients. In acute NH4Cl loading, p.E161K carriers displayed a higher trough urinary pH (5.34 versus 4.89; P=0.01) than wild-type patients. Overall, 14.6% of wild-type patients and 52.4% of p.E161K carriers were unable to acidify their urine below pH 5.3 and thus, can be considered to have incomplete dRTA. In summary, our data indicate that recurrent stone formers with the vacuolar H+-ATPase B1 subunit p.E161K SNP exhibit a urinary acidification deficit with an increased prevalence of calcium phosphate– containing kidney stones. The burden of E161K heterozygosity may be a forme fruste of dRTA.