879 resultados para POPULATION CHANGE
Resumo:
Growing human populations and changing dietary preferences are increasing global demands for fish, adding pressure to concerns over fisheries sustainability. Here we develop and link models of physical, biological and human responses to climate change in 67 marine national exclusive economic zones, which yield approximately 60% of global fish catches, to project climate change yield impacts in countries with different dependencies on marine fisheries. Predicted changes in fish production indicate increased productivity at high latitudes and decreased productivity at low/mid latitudes, with considerable regional variations. With few exceptions, increases and decreases in fish production potential by 2050 are estimated to be <10% (mean C3.4%) from present yields. Among the nations showing a high dependency on fisheries, climate change is predicted to increase productive potential in West Africa and decrease it in South and Southeast Asia. Despite projected human population increases and assuming that per capita fish consumption rates will be maintained1, ongoing technological development in the aquaculture industry suggests that projected global fish demands in 2050 could be met, thus challenging existing predictions of inevitable shortfalls in fish supply by the mid-twenty-first century. This conclusion, however, is contingent on successful implementation of strategies for sustainable harvesting and effective distribution of wild fish products from nations and regions with a surplus to those with a deficit. Changes in management effectiveness2 and trade practices5 will remain the main influence on realized gains or losses in global fish production.
Resumo:
Climate change has had profound effects upon marine ecosystems, impacting across all trophic levels from plankton to apex predators. Determining the impacts of climate change on marine ecosystems requires understanding the direct effects on all trophic levels as well as indirect effects mediated by trophic coupling. The aim of this study was to investigate the effects of climate change on the pelagic food web in the Celtic Sea, a productive shelf region in the Northeast Atlantic. Using long-term data, we examined possible direct and indirect ‘bottom-up’ climate effects across four trophic levels: phytoplankton, zooplankton, mid-trophic level fish and seabirds. During the period 1986–2007, although there was no temporal trend in the North Atlantic Oscillation index (NAO), the decadal mean Sea Surface Temperature (SST) in the Celtic Sea increased by 0.66±0.02°C. Despite this, there was only a weak signal of climate change in the Celtic Sea food web. Changes in plankton community structure were found, however this was not related to SST or NAO. A negative relationship occurred between herring abundance (0- and 1-group) and spring SST (0-group: p = 0.02, slope = −0.305±0.125; 1-group: p = 0.04, slope = −0.410±0.193). Seabird demographics showed complex species–specific responses. There was evidence of direct effects of spring NAO (on black-legged kittiwake population growth rate: p = 0.03, slope = 0.0314±0.014) as well as indirect bottom-up effects of lagged spring SST (on razorbill breeding success: p = 0.01, slope = −0.144±0.05). Negative relationships between breeding success and population growth rate of razorbills and common guillemots may be explained by interactions between mid-trophic level fish. Our findings show that the impacts of climate change on the Celtic Sea ecosystem is not as marked as in nearby regions (e.g. the North Sea), emphasizing the need for more research at regional scales.
Resumo:
The cool-water copepod Calanus finmarchicus is a key species in North Atlantic marine ecosystems since it represents an important food resource for the developmental stages of several fish of major economic value. Over the last 40 years, however, data from the Continuous Plankton Recorder survey have highlighted a 70 per cent reduction in C. finmarchicus biomass, coupled with a gradual northward shift in the species's distribution, which have both been linked with climate change. To determine the potential for C. finmarchicus to track changes in habitat availability and maintain stable effective population sizes, we have assessed levels of gene flow and dispersal in current populations, as well as using a coalescent approach together with palaeodistribution modelling to elucidate the historical population demography of the species over previous changes in Earth's climate. Our findings indicate high levels of dispersal and a constant effective population size over the period 359 000–566 000 BP and suggest that C. finmarchicus possesses the capacity to track changes in available habitat, a feature that may be of crucial importance to the species's ability to cope with the current period of global climate change.
Resumo:
Research to date has suggested that both individual marine species and ecological processes are expected to exhibit diverse responses to the environmental effects of climate change. Evolutionary responses can occur on rapid (ecological) timescales, and yet studies typically do not consider the role that adaptive evolution will play in modulating biological responses to climate change. Investigations into such responses have typically been focused at particular biological levels (e.g., cellular, population, community), often lacking interactions among levels. Since all levels of biological organisation are sensitive to global climate change, there is a need to elucidate how different processes and hierarchical interactions will influence species fitness. Therefore, predicting the responses of communities and populations to global change will require multidisciplinary efforts across multiple levels of hierarchy, from the genetic and cellular to communities and ecosystems. Eventually, this may allow us to establish the role that acclimatisation and adaptation will play in determining marine community structures in future scenarios.
Resumo:
Many established models of animal foraging assume that individuals are ecologically equivalent. However, it is increasingly recognized that populations may comprise individuals who differ consistently in their diets and foraging behaviors. For example, recent studies have shown that individual foraging site fidelity (IFSF, when individuals consistently forage in only a small part of their population's home range) occurs in some colonial breeders. Short‐term IFSF could result from animals using a win–stay, lose–shift foraging strategy. Alternatively, it may be a consequence of individual specialization. Pelagic seabirds are colonial central‐place foragers, classically assumed to use flexible foraging strategies to target widely dispersed, spatiotemporally patchy prey. However, tracking has shown that IFSF occurs in many seabirds, although it is not known whether this persists across years. To test for long‐term IFSF and to examine alternative hypotheses concerning its cause, we repeatedly tracked 55 Northern Gannets (Morus bassanus) from a large colony in the North Sea within and across three successive breeding seasons. Gannets foraged in neritic waters, predictably structured by tidal mixing and thermal stratification, but subject to stochastic, wind‐induced overturning. Both within and across years, coarse to mesoscale (tens of kilometers) IFSF was significant but not absolute, and foraging birds departed the colony in individually consistent directions. Carbon stable isotope ratios in gannet blood tissues were repeatable within years and nitrogen ratios were also repeatable across years, suggesting long‐term individual dietary specialization. Individuals were also consistent across years in habitat use with respect to relative sea surface temperature and in some dive metrics, yet none of these factors accounted for IFSF. Moreover, at the scale of weeks, IFSF did not decay over time and the magnitude of IFSF across years was similar to that within years, suggesting that IFSF is not primarily the result of win–stay, lose–shift foraging. Rather, we hypothesize that site familiarity, accrued early in life, causes IFSF by canalizing subsequent foraging decisions. Evidence from this and other studies suggests that IFSF may be common in colonial central‐place foragers, with far‐reaching consequences for our attempts to understand and conserve these animals in a rapidly changing environment.
Resumo:
To obtain enough quantity of osteogenic cells is a challenge for successful cell therapy in bone defect treatment, and cell numbers were usually achieved by culturing bone marrow cells in a relatively long duration. This study reported a simple and cost effective method to enhance the number of MSCs by collecting and replating the non-adherent cell population of marrow MSCs culture. Bone marrow MSCs were isolated from 11 patients, cultured at a density of 1×105/cm2 to 1×106/cm2 in flasks. For the first three times of media change, the floating cells were centrifuged and replated in separate flasks. The total number of cells in both the primary and replating flasks were counted at day 21. Cell proliferation rate, potentials for osteogenic, chondrognenic, and adipogenic differentiation were examined in both cell types in vitro. In-vivo osteogenic potentials of the cells were also tested in mice implantation model. The results showed that MSCs derived from non-adherent cell population of marrow cell cultures have similar cell proliferation and differentiation potentials as the originally attached MSCs in vitro. When implanted with HA-TCP materials subcutaneously in SCID mice, newly formed bony tissues were found in both cell type groups with osteocalcin expression. We have obtained 36.6% (20.70%-44.97%) more MSCs in the same culture period when the non-adherent cell populations were collected. The findings confirmed that the non-adherent cell population in the bone marrow culture is a complementary source of MSCs, collecting these cells is a simple and cost-effective way to increase MSCs numbers and reduce the time required for culturing MSCs for clinical applications.
Resumo:
The eastern Canadian Arctic is home to Canada’s largest Indigenous population, which depends on local freshwater sources for drinking water. However, small watersheds have rarely been analyzed for long-term hydrologic response to changing climate. This study aims to address this issue by examining the Apex River, a small watershed with a long hydroclimatic record, near Iqaluit, Nunavut. Particular emphasis was placed on the long-term changes in climate and river discharge, and the seasonal variability of water sources between two snapshots in time, 1983 and 2013. Long-term hydrological data were obtained from gauge station 10UH002, operated by Environment and Climate Change Canada, and long-term meteorological data were acquired from Environment Canada–operated stations near Iqaluit Airport. Breakpoint analysis suggested that long-term mean annual surface air temperatures have increased since 1994. In contrast, no long-term total precipitation or annual discharge changes were observed. However, river flow initiation and cessation analyses of the Apex River flow season indicates that flow extended into the autumn since the 2000s. The 2013 flow season lasted 44 days longer than the 1983 flow season. Systematic river sampling was undertaken throughout the 2013 thaw season to determine contributing proportions of event (snowmelt or rainfall) and pre-event (baseflow) water to river runoff. Results from the stable isotope hydrograph separation for 2013 were compared to findings for 1983. Snow was the main source of water to the river during the snowmelt period in 1983 and 2013, however baseflow was still an important contributor. Although there was high similarity of water sources early in the season in 1983 and 2013, the two years differed during the autumn. In 2013 there was a high rainfall runoff response that was not present in 1983, suggesting high release of late-season sub-surface water storage and an increased sensitivity to late-season rainfall events in 2013. This research provides insights into the hydrologic response of the Apex River to long-term climatic change, and highlights the need for high-quality precipitation and discharge data for effective long-term hydrological assessment.
Resumo:
Understanding climate change and its potential impact on species, populations and communities is one of the most pressing questions of twenty-fi rst-century conservation planning. Palaeobiogeographers working on Cenozoic fossil records and other lines of evidence are producing important insights into the dynamic nature of climate and the equally dynamic response of species, populations and communities. Climatic variations ranging in length from multimillennia to decades run throughout the palaeo-records of the Quaternary and earlier Cenozoic and have been shown to have had impacts ranging from changes in the genetic structure and morphology of individual species, population sizes and distributions, community composition to large-scale bio-diversity gradients. The biogeographical impacts of climate change may be due directly to the effects of alterations in temperature and moisture on species, or they may arise due to changes in factors such as disturbance regimes. Much of the recent progress in the application of palaeobiogegraphy to issues of climate change and its impacts can be attributed to developments along a number of still advancing methodological frontiers. These include increasingly finely resolved chronological resolution, more refi ned atmosphere-biosphere modelling, new biological and chemical techniques in reconstructing past species distributions and past climates, the development of large and readily accessible geo-referenced databases of biogeographical and climatic information, and new approaches in fossil morphological analysis and new molecular DNA techniques.
Resumo:
The cool-water copepod Calanus finmarchicus is a key species in North Atlantic marine ecosystems since it represents an important food resource for the developmental stages of several fish of major economic value. Over the last 40 years, however, data from the Continuous Plankton Recorder survey have highlighted a 70 per cent reduction in C. finmarchicus biomass, coupled with a gradual northward shift in the species's distribution, which have both been linked with climate change. To determine the potential for C. finmarchicus to track changes in habitat availability and maintain stable effective population sizes, we have assessed levels of gene flow and dispersal in current populations, as well as using a coalescent approach together with palaeodistribution modelling to elucidate the historical population demography of the species over previous changes in Earth's climate. Our findings indicate high levels of dispersal and a constant effective population size over the period 359 000-566 000 BP and suggest that C. finmarchicus possesses the capacity to track changes in available habitat, a feature that may be of crucial importance to the species's ability to cope with the current period of global climate change.
Resumo:
Conflicts between field sports, animal welfare and species conservation are frequently contentious. In Ireland, the Irish Coursing Club (ICC) competitively tests the speed and agility of two greyhounds by using a live hare as a lure. Each coursing club is associated with a number of discrete localities, known as preserves, which are managed favourably for hares including predator control, prohibition of other forms of hunting such as shooting and poaching and the maintenance and enhancement of suitable hare habitat. We indirectly tested the efficacy of such management by comparing hare abundance within preserves to that in the wider countryside. In real terms, mean hare density was 18 times higher, and after controlling for variance in habitat remained 3 times higher, within ICC preserves than the wider countryside. Whilst we cannot rule out the role of habitat, our results suggest that hare numbers are maintained at high levels in ICC preserves either because clubs select areas of high hare density and subsequently have a negligible effect on numbers or that active population management positively increases hare abundance. The Irish hare Lepus timidus hibernicus Bell, 1837 is one of the highest priority species for conservation action in Ireland and without concessions for its role in conservation, any change in the legal status Of hare coursing under animal welfare grounds, may necessitate an increase in Government subsidies for conservation on private land together with a strengthened capacity for legislation enforcement.
Resumo:
Recent climatic change has been recorded across the globe. Although environmental change is a characteristic feature of life on Earth and has played a major role in the evolution and global distribution of biodiversity, predicted future rates of climatic change, especially in temperature, are such that they will exceed any that has occurred over recent geological time. Climate change is considered as a key threat to biodiversity and to the structure and function of ecosystems that may already be subject to significant anthropogenic stress. The current understanding of climate change and its likely consequences for the fishes of Britain and Ireland and the surrounding seas are reviewed through a series of case studies detailing the likely response of several marine, diadromous and freshwater fishes to climate change. Changes in climate, and in particular, temperature have and will continue to affect fish at all levels of biological organization: cellular, individual, population, species, community and ecosystem, influencing physiological and ecological processes in a number of direct, indirect and complex ways. The response of fishes and of other aquatic taxa will vary according to their tolerances and life stage and are complex and difficult to predict. Fishes may respond directly to climate-change-related shifts in environmental processes or indirectly to other influences, such as community-level interactions with other taxa. However, the ability to adapt to the predicted changes in climate will vary between species and between habitats and there will be winners and losers. In marine habitats, recent changes in fish community structure will continue as fishes shift their distributions relative to their temperature preferences. This may lead to the loss of some economically important cold-adapted species such as Gadus morhua and Clupea harengus from some areas around Britain and Ireland, and the establishment of some new, warm-adapted species. Increased temperatures are likely to favour cool-adapted (e.g. Perca fluviatilis) and warm-adapted freshwater fishes (e.g. roach Rutilus rutilus and other cyprinids) whose distribution and reproductive success may currently be constrained by temperature rather than by cold-adapted species (e.g. salmonids). Species that occur in Britain and Ireland that are at the edge of their distribution will be most affected, both negatively and positively. Populations of conservation importance (e.g. Salvelinus alpinus and Coregonus spp.) may decline irreversibly. However, changes in food-web dynamics and physiological adaptation, for example because of climate change, may obscure or alter predicted responses. The residual inertia in climate systems is such that even a complete cessation in emissions would still leave fishes exposed to continued climate change for at least half a century. Hence, regardless of the success or failure of programmes aimed at curbing climate change, major changes in fish communities can be expected over the next 50 years with a concomitant need to adapt management strategies accordingly.
Resumo:
Global climate change is having a significant effect on the distributions of a wide variety of species, causing both range shifts and population extinctions. To date, however, no consensus has emerged on how these processes will affect the range-wide genetic diversity of impacted species. It has been suggested that species that recolonized from low-latitude refugia might harbour high levels of genetic variation in rear-edge populations, and that loss of these populations could cause a disproportionately large reduction in overall genetic diversity in such taxa. In the present study, we have examined the distribution of genetic diversity across the range of the seaweed Chondrus crispus, a species that has exhibited a northward shift in its southern limit in Europe over the last 40 years. Analysis of 19 populations from both sides of the North Atlantic using mitochondrial single nucleotide polymorphisms (SNPs), sequence data from two singlecopy nuclear regions and allelic variation at eight microsatellite loci revealed unique genetic variation for all marker classes in the rear-edge populations in Iberia, but not in the rear-edge populations in North America. Palaeodistribution modelling and statistical testing of alternative phylogeographic scenarios indicate that the unique genetic diversity in Iberian populations is a result not only of persistence in the region during the last glacial maximum, but also because this refugium did not contribute substantially to the recolonization of Europe after the retreat of the ice. Consequently, loss of these rear-edge populations as a result of ongoing climate change will have a major effect on the overall genetic diversity of the species, particularly in Europe, and this could compromise the adaptive potential of the species as a whole in the face of future global warming.
Resumo:
The Pacific oyster (Crassostrea gigas) was introduced into Strangford Lough, Northern Ireland in the 1970s. It was assumed that local environmental conditions would not facilitate successful reproduction. However, in the 1990s there were reports of C. gigas outside licensed aquaculture sites and this investigation set out to ascertain the current distribution, years of likely recruitment and population structure of the species. C. gigas were found distributed widely throughout the northern basin during surveys; the frequency distribution suggesting C. gigas is not recruiting every year. Establishment of feral populations of C. gigas elsewhere have linked to habitat change. A pilot cull was initiated to assess the success rate of early intervention. This paper demonstrates the potential benefits of responding rapidly to initial reports of non-native species in a way that may curtail establishment and expansion. The method advocated in simple and can be recommended to the appropriate regulatory authorities.
Resumo:
Mid to high latitude forest ecosystems have undergone several major compositional changes during the Holocene. The temporal and spatial patterns of these vegetation changes hold potential information to their causes and triggers. Here we test the hypothesis that the timing of vegetation change was synchronous on a sub-continental scale, which implies a common trigger or a step-like change in climate parameters. Pollen diagrams from selected European regions were statistically divided into assemblage zones and the temporal pattern of the zone boundaries analysed. The results show that the temporal pattern of vegetation change was significantly different from random. Times of change cluster around8.2, 4.8, 3.7, and 1.2 ka, while times of higher than average stability were found around 2.1 and 5.1 ka.Compositional changes linked to the expansion of Corylus avellana and Alnus glutinosa centre around 10.6 and 9.5 ka, respectively. A climatic trigger initiating these changes may have occurred 0.5 to 1 ka earlier, respectively. The synchronous expansion of C. avellana and A. glutinosa exemplify that dispersal is not necessarily followed by population expansion. The partly synchronous, partly random expansion of A. glutinosa in adjacent European regions exemplifies that sudden synchronous population expansions are not species specific traits but vary regionally.