942 resultados para POLYCRYSTALLINE PLATINUM-ELECTRODES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tensile and fatigue properties of as-rolled and annealed polycrystalline Cu foils with different thicknesses at the micrometer scale were investigated. Uniaxial tensile testing results showed that with decreasing foil thickness the uniform elongation decreases for both as-rolled and annealed foils, whereas the yield strength and ultimate tensile strength increase for as-rolled foils, but decrease for the annealed foils. For both the as-rolled or annealed foils, bending fatigue resistance decreases with decreasing the foil thickness. Deformation and fatigue damage behaviour of the free-standing foils were characterised as a function of foil thickness. In addition, the fatigue strength of various small-scale Cu foils was compared to understand they physical mechanisms of size effects on mechanical properties of the metallic material at micrometer scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical performance of indium tin oxide (ITO) coated glass was improved by including a controlled layer of carbon nanotubes directly on top of the ITO film. Multi-wall carbon nanotubes (MWCNTs) were synthesized by chemical vapor deposition, using ultra-thin Fe layers as catalyst. The process parameters (temperature, gas flow and duration) were carefully refined to obtain the appropriate size and density of MWCNTs with a minimum decrease of the light harvesting in the cell. When used as anodes for organic solar cells based on poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), the MWCNT-enhanced electrodes are found to improve the charge carrier extraction from the photoactive blend, thanks to the additional percolation paths provided by the CNTs. The work function of as-modified ITO surfaces was measured by the Kelvin probe method to be 4.95 eV, resulting in an improved matching to the highest occupied molecular orbital level of the P3HT. This is in turn expected to increase the hole transport and collection at the anode, contributing to the significant increase of current density and open circuit voltage observed in test cells created with such MWCNT-enhanced electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA) to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm3 proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time. We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process. Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (20483 voxels) in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway. Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the advance of the front are coupled in a feedback loop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morphology changes induced in polycrystalline silver catalysts as a result of heating in either oxygen, water or oxygen-methanol atmospheres have been investigated by environmental scanning electron microscopy (ESEM), FT-Raman spectroscopy and temperature programmed desorption (TPD). The silver catalyst of interest consisted of two distinct particle types, one of which contained a significant concentration of sub-surface hydroxy species (in addition to surface adsorbed atomic oxygen). Heating the sample to 663 K resulted in the production of 'pin-holes' in the silver structure as a consequence of near-surface explosions caused by sub-surface hydroxy recombination. Furthermore, 'pin-holes' were predominantly found in the vicinity of surface defects, such as platelets and edge structures. Reaction between methanol and oxygen also resulted in the formation of 'pin-holes' in the silver surface, which were inherently associated with the catalytic process. A reaction mechanism is suggested that involves the interaction of methanol with sub-surface oxygen species to form sub-surface hydroxy groups. The sub-surface hydroxy species subsequently erupt through the silver surface to again produce 'pin-holes'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combined techniques of in situ Raman microscopy and scanning electron microscopy (SEM) have been used to study the selective oxidation of methanol to formaldehyde and the ethene epoxidation reaction over polycrystalline silver catalysts. The nature of the oxygen species formed on silver was found to depend critically upon the exact morphology of the catalyst studied. Bands at 640, 780 and 960 cm-1 were identified only on silver catalysts containing a significant proportion of defects. These peaks were assigned to subsurface oxygen species situated in the vicinity of surface dislocations, AgIII=O sites formed on silver atoms modified by the presence of subsurface oxygen and O2 - species stabilized on subsurface oxygen-modified silver sites, respectively. The selective oxidation of methanol to formaldehyde was determined to occur at defect sites, where reaction of methanol with subsurface oxygen initially produced subsurface OH species (451 cm-1) and adsorbed methoxy species. Two distinct forms of adsorbed ethene were identified on oxidised silver sites. One of these was created on silver sites modified by the interaction of subsurface oxygen species, and the other on silver crystal planes containing a surface coverage of atomic oxygen species. The selective oxidation of ethene to ethylene oxide was achieved by the reaction between ethene adsorbed on modified silver sites and electrophilic AgIII=O species, whereas the combustion reaction was perceived to take place by the reaction of adsorbed ethene with nucleophilic surface atomic oxygen species. Defects were determined to play a critical role in the epoxidation reaction, as these sites allowed the rapid diffusion of oxygen into subsurface positions, and consequently facilitated the formation of the catalytically active AgIII=O sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of oxidation and reduction conditions upon the morphology of polycrystalline silver catalysts has been investigated by means of in situ Fourier-transform infrared (FTIR) spectroscopy. Characterization of the sample was achieved by inspection of the νas(COO) band profile of adsorbed formate, recorded after dosing with formic acid at ambient temperature. Evidence was obtained for the existence of a silver surface reconstructed by the presence of subsurface oxygen in addition to the conventional family of Ag(111) and Ag(110) crystal faces. Oxidation at 773 K facilitated the reconstruction of silver planes due to the formation of subsurface oxygen species. Prolonged oxygen treatment at 773 K also caused particle fragmentation as a consequence of excessive oxygen penetration of the silver catalyst at defect sites. It was also deduced that the presence of oxygen in the gas phase stabilized the growth of silver planes which could form stronger bonds with oxygen. In contrast, high-temperature thermal treatment in vacuum induced significant sintering of the silver catalyst. Reduction at 773 K resulted in substantial quantities of dissolved hydrogen (and probably hydroxy species) in the bulk silver structure. Furthermore, enhanced defect formation in the catalyst was also noted, as evidenced by the increased concentration of formate species associated with oxygen-reconstructed silver faces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An electropolishing method has been developed for preparing sharp needles from polycrystalline YBa2Cu3O7-δ by modifying a recipe for TEM specimen preparation. The method is characterized by a polishing temperature of below 0°C, a non-acidic electrolyt and an even removal of the constituent phases. An approach was employed of combining I-V measurements for polishing process and microscopical observation of surface morphology in finding optimum polishing conditions. TEM evidenced that no preferential attack appeared to grain boundaries. X-ray diffractometry and electron diffraction implied that no change in oxygen content occurred during electropolishing. The sharpness of the tip was examined by field-ion microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyaniline (PANI) thin films modified with platinum nanoparticles have been prepared by several methods, characterised and assessed in terms of electrocatalytic properties. These composite materials have been prepared by the in situ reduction of a platinum salt (K2PtCl4) by PANI, in a variety of solvents, resulting in the formation of platinum nanoparticles and clusters of different sizes. The further deposition of platinum clusters at spin cast thin films of PANI/Pt composites from a neutral aqueous solution of K2PtCl4 has also been demonstrated. Thin-film electrodes prepared from these materials have been investigated for their electrocatalytic activity by studying hydrazine oxidation and dichromate reduction. The properties of the composite materials have been determined using UV–visible spectroscopy, atomic force microscopy and transmission electron microscopy. The nature of the material formed is strongly dependent on the solvent used to dissolve PANI, the method of preparation of the PANI/Pt solution and the composition of the spin cast thin film before subsequent deposition of platinum from the aqueous solution of K2PtCl4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical reduction of TCNQ to TCNQ•- in acetonitrile in the presence of [Cu(MeCN)4]+ has been undertaken at boron-doped diamond (BDD) and indium tin oxide (ITO) electrodes. The nucleation and growth process at BDD is similar to that reported previously at metal electrodes. At an ITO electrode, the electrocrystallization of more strongly adhered, larger, branched, needle-shaped phase I CuTCNQ crystals is detected under potential step conditions and also when the potential is cycled over the potential range of 0.7 to −0.1 V versus Ag/AgCl (3 M KCl). Video imaging can be used at optically transparent ITO electrodes to monitor the growth stage of the very large branched crystals formed during the course of electrochemical experiments. Both in situ video imaging and ex situ X-ray diffraction and scanning electron microscopy (SEM) data are consistent with the nucleation of CuTCNQ taking place at a discrete number of preferred sites on the ITO surface. At BDD electrodes, ex situ optical images show that the preferential growth of CuTCNQ occurs at the more highly conducting boron-rich areas of the electrode, within which there are preferred sites for CuTCNQ formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of electrodeposited metal-based nanostructures for electroanalytical applications has recently received widespread attention. There are several approaches to creating nanostructured materials through electrochemical routes that include facile electrodeposition at either untreated or modified electrodes, or through the use of physical or chemical templating methods. This allows the shape, size and composition of the nanomaterial to be readily tuned for the application of interest. The use of such materials is particularly suited to electroanalytical applications. In this mini-review an overview of recently developed nanostructured materials developed through electrochemical routes is presented as well as their electroanalytical applications in areas of biological and environmental importance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Even though gold is the noblest of metals, a weak chemisorber and is regarded as being quite inert, it demonstrates significant electrocatalytic activity in its nanostructured form. It is demonstrated here that nanostructured and even evaporated thin films of gold are covered with active sites which are responsible for such activity. The identification of these sites is demonstrated with conventional electrochemical techniques such as cyclic voltammetry as well as a large amplitude Fourier transformed alternating current (FT-ac) method under acidic and alkaline conditions. The latter technique is beneficial in determining if an electrode process is either Faradaic or capacitive in nature. The observed behaviour is analogous to that observed for activated gold electrodes whose surfaces have been severely disrupted by cathodic polarisation in the hydrogen evolution region. It is shown that significant electrochemical oxidation responses occur at discrete potential values well below that for the formation of the compact monolayer oxide of bulk gold and are attributed to the facile oxidation of surface active sites. Several electrocatalytic reactions are explored in which the onset potential is determined by the presence of such sites on the surface. Significantly, the facile oxidation of active sites is used to drive the electroless deposition of metals such as platinum, palladium and silver from their aqueous salts on the surface of gold nanostructures. The resultant surface decoration of gold with secondary metal nanoparticles not only indicates regions on the surface which are rich in active sites but also provides a method to form interesting bimetallic surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of storage time on the cyclability of lithium electrodes in an ionic liquid electrolyte, namely 0.5 m LiBF4 in N-methyl-N-propyl pyrrolidinium bis(fluorosulfonyl)imide, [C3mpyr+][FSI–], was investigated. A chemical interaction was observed which is time dependent and results in a morphology change of the Li surface due to build up of passivation products over a 12-day period. The formation of this layer significantly impacts on the Li electrode resistance before cycling and the charging/discharging process for symmetrical Li|0.5 m LiBF4 in [C3mpyr+][FSI–]|Li coin cells. Indeed it was found that introducing a rest period between cycling, and thereby allowing the chemical interaction between the Li electrode and electrolyte to take place, also impacted on the charging/discharging process. For all Li surface treatments the electrode resistance decreased after cycling and was due to significant structural rearrangement of the surface layer. These results suggest that careful electrode pretreatment in a real battery system will be required before operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of extended cycling on lithium metal electrodes has been investigated in an ionic liquid electrolyte. Cycling studies were conducted on lithium metal electrodes in a symmetrical Li|electrolyte|Li coin cell configuration for 5000 charge–discharge cycles at a current density of 0.1 mA cm− 2. The voltage–time plots show evidence of some unstable behavior which is attributed to surface reorganization. No evidence for lithium dendrite induced short circuiting was observed. SEM imaging showed morphology changes had occurred but no evidence of needle-like dendrite based growth was found after 5000 charge–discharge cycles. This study suggests that ionic liquid electrolytes can enable next generation battery technologies such as rechargeable lithium-air, in which a safe, reversible lithium electrode is a crucial component.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gold is often considered as an inert material but it has been unequivocally demonstrated that it possesses unique electronic, optical, catalytic and electrocatalytic properties when in a nanostructured form.[1] For the latter the electrochemical behaviour of gold in aqueous media has been widely studied on a plethora of gold samples, including bulk polycrystalline and single-crystal electrodes, nanoparticles, evaporated films as well as electrodeposited nanostructures, particles and thin films.[1b, 2] It is now well-established that the electrochemical behaviour of gold is not as simple as an extended double-layer charging region followed by a monolayer oxide-formation/-removal process. In fact the so-called double-layer region of gold is significantly more complicated and has been investigated with a variety of electrochemical and surface science techniques. Burke and others[3] have demonstrated that significant processes due to the oxidation of low lattice stabilised atoms or clusters of atoms occur in this region at thermally and electrochemically treated electrodes which were confirmed later by Bond[4] to be Faradaic in nature via large-amplitude Fourier transformed ac voltammetric experiments. Supporting evidence for the oxidation of gold in the double-layer region was provided by Bard,[5] who used a surface interrogation mode of scanning electrochemical microscopy to quantify the extent of this process that forms incipient oxides on the surface. These were estimated to be as high as 20% of a monolayer. This correlated with contact electrode resistance measurements,[6] capacitance measurements[7] and also electroreflection techniques...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel electrochemical route is used to form highly {111}-oriented and size-controlled Au nanoprisms directly onto the electrodes of quartz crystal microbalances (QCMs) which are subsequently used as mercury vapor sensors. The Au nanoprism loaded QCM sensors exhibited excellent response–concentration linearity with a response enhancement of up to ~ 800% over a non-modified sensor at an operating temperature of 28 °C. The increased surface area and atomic-scale features (step/defect sites) introduced during the growth of nanoprisms are thought to play a significant role in enhancing the sensing properties of the Au nanoprisms toward Hg vapor. The sensors are shown to have excellent Hg sensing capabilities in the concentration range of 0.123–1.27 ppmv (1.02–10.55 mg m − 3), with a detection limit of 2.4 ppbv (0.02 mg m − 3) toward Hg vapor when operating at 28 °C, and 17 ppbv (0.15 mg m − 3) at 89 °C, making them potentially useful for air monitoring applications or for monitoring the efficiency of Hg emission control systems in industries such as mining and waste incineration. The developed sensors exhibited excellent reversible behavior (sensor recovery) within 1 h periods, and crucially were also observed to have high selectivity toward Hg vapor in the presence of ethanol, ammonia and humidity, and excellent long-term stability over a 33 day operating period.