973 resultados para POLY(ETHER IMIDE)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The family of semi-crystalline, aromatic, high-temperature thermoplastics known as poly(ether-ketone)s are insoluble in conventional organic solvents, but undergo completely general and quantitatively reversible reactions with alkanedithiols in strong acid media, to give soluble poly(dithioacetal)s, which are readily characterisable by GPC and light scattering techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interaction of a novel pyrene-based tweezer molecule with a macrocyclic ether-imide-sulfone results in formation of a strongly bound complex (K-a = 24 000 M-1) in which binding results not only from pi-pi stacking interactions involving pyrene units as donors and macrocyclic naphthalene-tetracarboximide and biphenylenedisulfone groups as acceptors but also from N-(HO)-O-... and C-(HO)-O-... hydrogen bonds and from "reverse" pi-stacking of the electron-poor isophthaloyl residue of the tweezer with an electron-rich 3-aminophenoxy residue of the macrocyclic imide.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Semi-crystalline poly(ether ketone)s are important high-temperature engineering thermoplastics, but are difficult to characterize at the molecular level because of their insolubility in conventional organic solvents. Here we report that polymers of this type, including PEEK, react cleanly at high temperatures with low-volatility aralkyl amines to afford stable, noncrystalline poly(ether-imine)s, which are readily soluble in solvents such as chloroform, THF and DMF and so characterizable by conventional size-exclusion chromatography.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Present work proposed to map and features the wear mechanisms of structural polymers of engineering derived of the sliding contact with a metallic cylindrical spindle submitted to eccentricity due to fluctuations in it is mass and geometric centers. For this it was projected and makes an experimental apparatus from balancing machine where the cylindrical counterbody was supported in two bearings and the polymeric coupon was situated in a holder with freedom of displacement along counterbody. Thus, the experimental tests were standardized using two position of the two bearings (Fixed or Free) and seven different positions along the counterbody, that permit print different conditions to the stiffness from system. Others parameters as applied normal load, sliding velocity and distance were fixed. In this investigation it was used as coupon two structural polymers of wide quotidian use, PTFE (polytetrafluroethylene) and PEEK (poly-ether-ether-ketone) and the AISI 4140 alloy steel as counterbody. Polymeric materials were characterized by thermal analysis (thermogravimetric, differential scanning calorimetry and dynamic-mechanical), hardness and rays-X diffractometry. While the metallic material was submitted at hardness, mechanical resistance tests and metallographic analysis. During the tribological tests were recorded the heating response with thermometers, yonder overall velocity vibration (VGV) and the acceleration using accelerometers. After tests the wear surface of the coupons were analyzed using a Scanning Electronic Microscopy (SEM) to morphological analysis and spectroscopy EDS to microanalysis. Moreover the roughness of the counterbody was characterized before and after the tribological tests. It was observed that the tribological response of the polymers were different in function of their distinct molecular structure. It were identified the predominant wear mechanisms in each polymer. The VGV of the PTFE was smaller than PEEK, in the condition of minimum stiffness, in function of the higher loss coefficient of that polymer. Wear rate of the PTFE was more of a magnitude order higher than PEEK. With the results was possible developed a correlation between the wear rate and parameter (E/ρ)1/2 (Young modulus, E, density, ρ), proportional at longitudinal elastic wave velocity in the material.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pyroelectric sensors work as a thermal transducer converting the non-quantified thermal flux into the output measurable quantity of electrical charge, voltage or current. Ferroelectric ceramics and ferroelectric polymers have been extensively used as thermal detectors. More recently the research in the field of pyroelectricity has been concentrated on discovering materials with higher figures of merit (FOM), which means better sensing materials. Composite materials obtained with ferroelectric ceramics embedded in polymer host have received great attention because of their formability, mechanical resistance and the possibility to change their dielectric property varying the volume fraction of ceramic particles. In this work composite films made of modified lead titanate (PZ34) and poly(ether-ether-ketone) (PEEK) were characterized and used as sensing element to measure X-ray intensity in the ortovoltage range (120 - 300 kVp). The sensor response varies from 2.70 V to 0.80 V in the energy fluency range of 6.30 to 37.20 W/m(2). Furthermore the absorbed energy was analyzed as a function of the ionizing energy. The results indicate that the PZ34/PEEK composite with 60/40 vol.% can be useful to monitor X-ray radiation therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Composites made of Calcium-modified lead titanate (PTCa) and poly (ether-etherketone) (PEEK) high performance polymer matrix were prepared in the film form using a hot press. The ceramic volume fraction reaches up to 60 percent providing a composite with 0-3 and 1-3 mixed connectivities due to the high ceramic content and the resulting materials could be considered PEEK-bonded PTCa particulate composite. The composites were characterized using piezoelectric spectroscopy and ultrasonic immersion techniques. Values up to 38.5 pC/N were obtained for the longitudinal d33 piezoelectric coefficient. The composite was surface-mounted on a carbon fiber plate-like specimen and the ability of the PTCa/PEEK composite to detect acoustic emission (AE) is reported. © 2006 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Retention of overdentures is important for patients' satisfaction. The study tested whether the clinical performance of retentive clips made of poly-ether-ether-ketone (PEEK) is superior to those made of poly-oxy-methylene (POM).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polymer/inorganic nanoparticle nanocomposites have garnered considerable academic and industrial interest over recent decades in the development of advanced materials for a wide range of applications. In this respect, the dispersion of so-called inorganic fullerene-like (IF) nanoparticles, e.g., tungsten disulfide (IF-WS2) or molybdenum disulfide (IF-MoS2), into polymeric matrices is emerging as a new strategy. The surprising properties of these layered metal dichalcogenides such as high impact resistance and superior tribological behavior, attributed to their nanoscale size and hollow quasi-spherical shape, open up a wide variety of opportunities for applications of these inorganic compounds. The present work presents a detailed overview on research in the area of IF-based polymer nanocomposites, with special emphasis on the use of IF-WS2 nanoparticles as environmentally friendly reinforcing fillers. The incorporation of IF particles has been shown to be efficient for improving thermal, mechanical and tribological properties of various thermoplastic polymers, such as polypropylene, nylon-6, poly(phenylene sulfide), poly(ether ether ketone), where nanocomposites were fabricated by simple melt-processing routes without the need for modifiers or surfactants. This new family of nanocomposites exhibits similar or enhanced performance when compared with nanocomposites that incorporate carbon nanotubes, carbon nanofibers or nanoclays, but are substantially more cost-effective, efficient and environmentally satisfactory. Most recently, innovative approaches have been described that exploit synergistic effects to produce new materials with enhanced properties, including the combined use of micro- and nanoparticles such as IF-WS2/nucleating agent or IF-WS2/carbon fiber, as well as dual nanoparticle systems such as SWCNT/IF-WS2 where each nanoparticle has different characteristics. The structure–property relationships of these nanocomposites are discussed and potential applications proposed ranging from medicine to the aerospace, automotive and electronics industries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of singlewalled carbon nanotubes (SWCNT) and inorganic fullerenelike tungsten disulfide nanoparticles (IFWS2) on the morphology and thermal, mechanical and electrical performance of multifunctional fibrereinforced polymer composites has been investigated. Significant improvements were observed in stiffness, strength and toughness in poly (ether ether ketone) (PEEK) / (SWCNT) / glass fibre (GF) laminates when a compatibilizer was used for wrapping the CNTs. Hybrid poly(phenylene sulphide) (PPS)/IFWS2/ carbon fibre (CF) reinforced polymer composites showed improved mechanical and tribological properties attributed to a synergetic effect between the IF nanoparticles and CF.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thermosetting blends of an aliphatic epoxy resin and a hydroxyl-functionalized hyperbranched polymer (HBP), aliphatic hyperbranched polyester Boltorn H40, were prepared using 4,4'-diaminodiphenylmethane (DDM) as the curing agent. The phase behavior and morphology of the DDM-cured epoxy/HBP blends with HBP content up to 40 wt% were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). The cured epoxy/HBP blends are immiscible and exhibit two separate glass transitions, as revealed by DMA. The SEM observation showed that there exist two phases in the cured blends, which is an epoxy-rich phase and an HBP-rich phase, which is responsible for the two separate glass transitions. The phase morphology was observed to be dependent on the blend composition. For the blends with HBP content up to 10 wt%, discrete HBP domains are dispersed in the continuous cured epoxy matrix, whereas the cured blend with 40 wt% HBP exhibits a combined morphology of connected globules and bicominuous phase structure. Porous epoxy thermosets with continuous open structures on the order of 100-300 nm were formed after the HBP-rich phase was extracted with solvent from the cured blend with 40 wt% HBP. The DSC study showed that the curing rate is not obviously affected in the epoxy/HBP blends with HBP content up to 40 wt %. The activation energy values obtained are not remarkably changed in the blends; the addition of HBP to epoxy resin thus does not change the mechanism of cure reaction of epoxy resin with DDM. (c) 2006 Wiley Periodicals, Inc.