957 resultados para PMN-PT ceramic
Resumo:
Glass-ceramic materials can be produced by the addition of LiO2 to fly ashes disposible in Southern Brazil. These glass-ceramics are based on the Al2O3-SiO2-Li 2O system. The high viscosity of the obtained glasses, however, makes forming useful articles with these materials difficult. In this study we investigate the effect of adding low cost Na2CO3 on the melt viscosity and on the nature of the developed crystalline phases. It was intended that the ultimate crystalline phase (LiAlSi3O8) should not be altered. With additions up to 3 wt. % Na2CO3, the viscosity was apparently lowered and no new crystalline phase were detected.
Resumo:
The influence of the presence of hydrogen on Pt/TiO2 catalysts submitted to reduction treatment has been studied by FT-IR at room temperature. After submitting to LTR treatment, the hydrogen spillover has been detected and the presence of hydrogen at the bulk is shown to produce a strong absorption in the infrared spectral region. After HTR treatment, the hydrogen is strongly chemissorbed.
Resumo:
The need for new materials to substitute injured or damaged parts of the human body has led scientists of different areas to the investigation of bioceramics since the 70's, when other materials in use started to show implantation problems. Bioceramics show some advantages like being the material that best mimics the bone tissue but also, present low mechanical strength due to its ceramic nature. This paper presents a general view about the topic.
Resumo:
Independent of the sample form (powder or film), XRD analysis of Ir0,3Ti(0,7-x)Ce xO2, (nominal) mixtures, for x=0, shows the formation of a solid solution phase between IrO2 and TiO2, as well as the rutile phases of IrO2 and TiO2. The presence of the anatase phase of TiO2 is also confirmed. The introduction of 30 mol% CeO2 in the mixture reveals the presence of the CeO2 and Ce2O3 phases, besides the already mentioned ones, in the powder. In the film form, however, an amorphous phase is identified. When all of the TiO2 is substituded by CeO2, for both sample forms, the only phases found are IrO2, CeO2 and Ce2O3. This result suggests cerium oxides are not capable of forming solid solutions with either IrO2 or (Ir,Ti)O2 acting solely as a dispersant matrix for these phases. These results are consistent with the much higher electrochemically active surface area when CeO2 is introduced in the binary Ti/Ir0,3Ti0,7O2 mixture. It was possible to establish a relationship between the electrochemical stability of the supported films and their crystalline structure. The unexpected presence of TiO2 and Ti2O3 in the Ti/Ir0,3Ce0,7O2 (film sample) is attributed to oxidation of the Ti support during the calcination step.
Resumo:
A study of the kinetics of oxygen evolution in alkaline conditions from ceramic films of Mn2O3 supported on stainless steel was carried out. This study has been done through the determination of transfer coefficients, Tafel slopes and exchange currents using potentiodynamic and quasi-potentiostatic measurements. The activation energy was determined as a function of the overpotential and, additionally, the electrode active surface was estimated. The results are consistent with data already published for other electrodes, implying that the methods used in this work were reliable and precise.
Resumo:
The preparation of gamma-LiAlO2 by coprecipitation and sol-gel synthesis was investigated. Ceramic powders obtained by coprecipitation synthesis were prepared from aqueous solutions of aluminum and lithium nitrates using sodium hydroxide as precipitant agent. By sol-gel synthesis, the ceramic powders were prepared from hydrolysis of aluminum isopropoxide. The materials obtained by two routes of synthesis were dried at 80ºC and calcined at 550, 750, 950 and 1150ºC. The characterization was done by X-ray diffraction, infrared spectroscopy, emission and absorption atomic spectrometry, helium picnometry, specific surface area (BET method) and scanning electronic microscopy. Mixtures of crystalline phases were obtained by coprecipitation synthesis: 80ºC- LiAl2(OH)7.2H2O + Al(OH)3; 550 and 750ºC- alpha-LiAlO2 + eta-Al2O3; 950 and 1150ºC- gamma-LiAlO2 + LiAl5O8. Chemical analysis showed molar ration Al/Li @ 3. Crystalline single-phases were obtained by sol-gel synthesis above 550ºC: 550ºC-alpha-LiAlO2; 750, 950 and 1150ºC-gamma-LiAlO2. These powders presented molar ration Al/Li @ 1. Thus, gamma-LiAlO2 crystalline phase was obtained at 750ºC by sol-gel synthesis while by coprecipitation synthesis, a mixture of crystalline phases was obtained. These results showed the superiority of the sol-gel synthesis for the preparation of pure gamma-LiAlO2.
Resumo:
The characterization of rice husk ash, a deriving by-product of the burning of the rice husk during the rice processing is the object of this study. This by-product, for being rich in silica, can be an important raw material for the production of siliceous ceramics, such as thermal insulators and refractory. A combination of surface analysis, thermal analysis and microscopy analysis techniques was used for the characterization. The characterized by-product presented as main component the silica, under amorphous form, with a maximum content of alkalis around 1%, features that become it potentially interesting for the production of ceramic materials.
Resumo:
Platinum is widely used as electrode in electrocatalytic processes, however the use of polycrystalline electrodes introduces a series of variables in the electrochemical system due to the aleatory contribution of all the crystallographic orientations with different surface packing of atoms. Single crystal platinum electrodes of low Miller index present surface structure of high regularity and serve as model to establish a correlation among the macroscopic and microscopic properties of the electrochemical interface. Therefore, the main aim of this work is the study of the voltammetric profiles of the reversible adsorption-desorption of hydrogen on Pt(100), Pt(110) and Pt(111), in order to correlate the electrochemical properties of each different orientation with the surface atomic structure.
Resumo:
The chemical durability of the Li2O-ZrO2-BaO-SiO2 system was examined by determination of the Vickers hardness. The dependence of hardness and of the chemical resistance with BaO addition was investigated. The experimental results indicate that the hardness increases with the BaO content. The samples surface's morphology submitted to the chemical treatment in acidic (H2SO4) and basic (KOH) solution was accompanied by scanning electron microscopy. The chemical durability of the materials with BaO showed better than the glass ceramic without this content. These materials treated with H2SO4 solution showed a preferential attack to the silica rich sites.
Resumo:
A paradigmatic shift in developing fuel cell for stationary applications has been occurring in the last ten years. Previously, 100 kW class to a few MW class power plants were preferred but recently, the development has drifted towards units of only a few kW. The motivation is the present market situation, which favors disperse residential electric power generation from natural or liquefied gas. Membrane-type fuel cells are very promising for this application, due to their present state of development in the automobile industry. More recently, small ceramic fuel cells (SOFC) has also been found to be adequate for this application. Considering a family of 4 members, 1 kW (electric) units seem to be optimal for individual residences. This presentation discusses briefly the Brazilian scenario with respect to these units.
Resumo:
The manufacture of glass-ceramics is an alternative route for the commercial use of metallurgical slags. Such types of glass-ceramics may find commercial applications owing to their low cost, good mechanical properties and superior visual aspect. Besides, due to the elimination of that industrial residue from the environment and also due to the possibility of replacement of natural stones such as marbles and granites, the use of slags is an activity with strong ecological appeal. While the use of blast-furnace slags for the production of glass-ceramics is well known, the utilization of steel making slags constitutes a challenge, because these materials possess low concentration of SiO2. In this work a novel composition for producing glasses and glass-ceramics from a steelmaking slag is presented. The crystal nucleation kinetics, the characterization of the resulting microstructures for two different thermal treatments and mechanical properties of the glass-ceramics are discussed. A glass-ceramic having a marble aspect, fine volumetric crystallization, high degree of crystallization and improved mechanical strength was obtained.
Resumo:
Bottom ash has been used as raw material to glass and glass ceramic production because it is a source of SiO2 and Al2O3. However, the high concentration of iron (about 10% wt.) difficulty the control of the nucleation and the crystallization processes. The iron content was reduced by magnetic process, where the magnetite phase was mainly removed. In order to compare glass ceramics obtained from original and low iron bottom ashes, microstructural and dilatometric characterizations were performed.
Resumo:
Nickel nanoparticles supported on amorphous silica ceramic matrix were synthesized by the polymeric precursor method. The nanostructure was characterized by NMR, BET, XRD, SEM, TEM, and flame atomic absorption spectrometry techniques. It was observed a dependence of the crystallite size on the thermal annealing, under a N2 atmosphere. The materials presented a high catalytic activity and selectivity upon the beta-pinene hydrogenation reaction. The magnetic hystereses were also correlated with the morphology of the processed material.
Resumo:
In this thesis, cleaning of ceramic filter plates clogged by iron oxides was studied. Oxalic acid is considered as the most effective cleaning agent for the plates fouled by iron oxides, but when using oxalic acid, sparingly soluble calcium oxalate may be formed and it can blind the filter media. Suitability of another chemical for cleaning the plates clogged by iron oxides was studied in this thesis. The literature part was mostly about the properties of the chemical, about its reactions, industrial uses, safety issues etc. In the experimental part, the efficiency of the chemical for cleaning of the ceramic plates clogged by iron oxides was studied. Two kinds of plates were used in the experiments; the others were clogged by hematite and the others by magnetite. Both soaking and flow-through experiments were done. A suitable concentration, pH and temperature were tried to find in the experiments. Also the effect of ultrasound was studied. The efficiency of the cleaning was examined by measuring the permeability of the plates during the experiments. ICP-OES analysis was performed for determining the amount of dissolved iron in the washing solution. Some experiments were also done with oxalic acid. The results from the oxalic acid experiments were compared to the results from the experiments with the other chemical. In the experiments with the other chemical, the permeability increased more and the amounts of dissolved iron were larger. According to the results from the experiments, the method of application of the washing solutions had an impact on the washing results.
Resumo:
This paper describes the drawing, construction and optimization of a device, which can be used to obtain single crystals of different metallic materials with melting point from 550 to 1050 ºC. Components of ease obtaining and of low cost were used. The device was based on the modified Bridgman technique and it was used to obtain single crystals of copper-based alloys. The temperature axial profiles and a difference less then 1% in the temperature between the wall and the center of the ceramic tube in the critical region for obtaining single crystals of good quality indicated that the oven presents a good thermal stability. Single crystals of CuZnAl and CuAlAg alloys of good quality were growth and characterized using optical microscopy and Laüe X-ray back reflection.