992 resultados para PHYSICS EVENT GENERATION
Resumo:
A measurement of charged-particle distributions sensitive to the properties of the underlying event is presented for an inclusive sample of events containing a Z-boson, decaying to an electron or muon pair. The measurement is based on data collected using the ATLAS detector at the LHC in proton–proton collisions at a centre-of-mass energy of 7 TeV with an integrated luminosity of 4.6fb−1. Distributions of the charged particle multiplicity and of the charged particle transverse momentum are measured in regions of azimuthal angle defined with respect to the Z-boson direction. The measured distributions are compared to similar distributions measured in jet events, and to the predictions of various Monte Carlo generators implementing different underlying event models.
Resumo:
Distributions sensitive to the underlying event in QCD jet events have been measured with the ATLAS detector at the LHC, based on 37 pb−1 of proton–proton collision data collected at a centre-of-mass energy of 7 TeV. Chargedparticle mean pT and densities of all-particle ET and chargedparticle multiplicity and pT have been measured in regions azimuthally transverse to the hardest jet in each event. These are presented both as one-dimensional distributions and with their mean values as functions of the leading-jet transverse momentum from 20 to 800 GeV. The correlation of chargedparticle mean pT with charged-particle multiplicity is also studied, and the ET densities include the forward rapidity region; these features provide extra data constraints for Monte Carlo modelling of colour reconnection and beamremnant effects respectively. For the first time, underlying event observables have been computed separately for inclusive jet and exclusive dijet event selections, allowing more detailed study of the interplay of multiple partonic scattering and QCD radiation contributions to the underlying event. Comparisonsto the predictions of different Monte Carlo models show a need for further model tuning, but the standard approach is found to generally reproduce the features of the underlying event in both types of event selection.
Resumo:
A measurement of event-plane correlations involving two or three event planes of different order is presented as a function of centrality for 7 μb −1 Pb+Pb collision data at √s NN =2.76 TeV, recorded by the ATLAS experiment at the Large Hadron Collider. Fourteen correlators are measured using a standard event-plane method and a scalar-product method, and the latter method is found to give a systematically larger correlation signal. Several different trends in the centrality dependence of these correlators are observed. These trends are not reproduced by predictions based on the Glauber model, which includes only the correlations from the collision geometry in the initial state. Calculations that include the final-state collective dynamics are able to describe qualitatively, and in some cases also quantitatively, the centrality dependence of the measured correlators. These observations suggest that both the fluctuations in the initial geometry and the nonlinear mixing between different harmonics in the final state are important for creating these correlations in momentum space.
Resumo:
We present a power-scalable approach for yellow laser-light generation based on standard Ytterbium (Yb) doped fibers. To force the cavity to lase at 1154 nm, far above the gain-maximum, measures must be taken to fulfill lasing condition and to suppress competing amplified spontaneous emission (ASE) in the high-gain region. To prove the principle we built a fiber-laser cavity and a fiber-amplifier both at 1154 nm. In between cavity and amplifier we suppressed the ASE by 70 dB using a fiber Bragg grating (FBG) based filter. Finally we demonstrated efficient single pass frequency doubling to 577 nm with a periodically poled lithium niobate crystal (PPLN). With our linearly polarized 1154 nm master oscillator power fiber amplifier (MOFA) system we achieved slope efficiencies of more than 15 % inside the cavity and 24 % with the fiber-amplifier. The frequency doubling followed the predicted optimal efficiency achievable with a PPLN crystal. So far we generated 1.5 W at 1154nm and 90 mW at 577 nm. Our MOFA approach for generation of 1154 nm laser radiation is power-scalable by using multi-stage amplifiers and large mode-area fibers and is therefore very promising for building a high power yellow laser-light source of several tens of Watt.
Resumo:
BACKGROUND In percutaneous coronary intervention (PCI) patients new-generation drug-eluting stent (DES) has reduced adverse events in comparison to early-generation DES. The aim of the current study was to investigate the long-term clinical efficacy and safety of new-generation DES versus early-generation DES for PCI of unprotected left main coronary artery (uLMCA) disease. METHODS The patient-level data from the ISAR-LEFT MAIN and ISAR-LEFT MAIN 2 randomized trials were pooled. The clinical outcomes of PCI patients assigned to new-generation DES (everolimus- or zotarolimus-eluting stent) versus early-generation DES (paclitaxel- or sirolimus-eluting stent) were studied. The primary endpoint was the composite of death, myocardial infarction (MI), target lesion revascularization and stroke (MACCE, major adverse cardiac and cerebrovascular event). RESULTS In total, 1257 patients were available. At 3 years, the risk of MACCE was comparable between patients assigned to new-generation DES or early-generation DES (28.2 versus 27.5 %, hazard ratio-HR 1.03, 95 % confidence intervals-CI 0.83-1.26; P = 0.86). Definite/probable stent thrombosis was low and comparable between new-generation DES and early-generation DES (0.8 versus 1.6 %, HR 0.52, 95 % CI 0.18-1.57; P = 0.25); in patients treated with new-generation DES no cases occurred beyond 30 days. Diabetes increased the risk of MACCE in patients treated with new-generation DES but not with early-generation DES (P interaction = 0.004). CONCLUSIONS At 3-year follow-up, a PCI with new-generation DES for uLMCA disease shows comparable efficacy to early-generation DES. Rates of stent thrombosis were low in both groups. Diabetes significantly impacts the risk of MACCE at 3 years in patients treated with new-generation DES for uLMCA disease. ClinicalTrials.gov Identifiers: NCT00133237; NCT00598637.
Resumo:
We have searched for periodic variations of the electronic recoil event rate in the (2-6) keV energy range recorded between February 2011 and March 2012 with the XENON100 detector, adding up to 224.6 live days in total. Following a detailed study to establish the stability of the detector and its background contributions during this run, we performed an un-binned profile likelihood analysis to identify any periodicity up to 500 days. We find a global significance of less than 1 sigma for all periods suggesting no statistically significant modulation in the data. While the local significance for an annual modulation is 2.8 sigma, the analysis of a multiple-scatter control sample and the phase of the modulation disfavor a dark matter interpretation. The DAMA/LIBRA annual modulation interpreted as a dark matter signature with axial-vector coupling of WIMPs to electrons is excluded at 4.8 sigma.
Resumo:
During the German Antarctic Expedition 1979/80, the sea ice conditions in the Weddell Sea were studied along the ice shelf between Cape Fiske (root of the Antarctlc Peninsula) and Atka Bay. Most intensively was the sea ice investigated in an area about 100 km northwest of Berkner Island, where a suitable site for the German station was found. In addition to the drift conditions, ice thickness as weIl as temperature and salinity of the ice were measured and the mechanical properties established. Several ice cores were taken back to Germany, where the compressive strength was measured in respect to strain rate, salinity, depth and temperature.
Resumo:
Empirical relationships between physical properties determined non-destructively by core logging devices and calibrated by carbonate and opal measurements determined on discrete samples allow extraction of carbonate and opal records from the non-destructive measurements in biogenic settings. Contents of detrital material can be calculated as a residual. For carbonate and opal the correlation coefficients (r) are 0.954 and ?0.916 for sediment density, ?0.816 and 0.845 for compressional-wave velocity, 0.908 and ?0.942 for acoustic impedance, and 0.886 and ?0.865 for sediment color (lightness). Carbonate contents increase in concert with increasing density and acoustic impedance, decreasing velocity and lighter sediment color. The opposite is true for opal. The advantages of deriving the sediment composition quantitatively from core logging are: (i) sampling resolution is increased significantly, (ii) non-destructive data can be gathered rapidly, and (iii) laboratory work on discrete samples can be reduced. Applied to paleoceanographic problems, this method offers the opportunity of precise stratigraphic correlations and of studying processes related to biogenic sedimentation in more detail. Density is most promising because it is most strongly affected by changes in composition.
Resumo:
We studied preservation/dissolution cycles and paleoproductivity in eight sediment cores from the Peru Basin south of the highly productive surface waters of the eastern equatorial Pacific. Stratigraphy is based on stable oxygen isotopes and on combined magnetostratigraphy and biostratigraphy. Sediment cores which span the last 8 m.y., were retrieved during cruise 79 with RV SONNE close to the carbonate compensation depth (CCD). In general, sediments show Pacific-type carbonate cycles. We interpret a pronounced carbonate peak between 6 and 7 Ma as the result of a western and northern extension of the highly productive Peru Current. Decreased carbonate contents from the late Miocene to the late Pliocene might be associated with a slow contraction of the latitudinal extent of the high-productivity belt north of the study areas. During the Pliocene, carbonate variations showed 400 kyr cycles indicating the growth and decay of ice sheets, which should have been associated with pulsations of the Antarctic ice cap. An abrupt collapse of the carbonate system occurred at 2.4 Ma. Higher frequency variations of the carbonate record indicate the major increase of the northern hemisphere glaciation. During the Quaternary, carbonate fluxes are high during glacials and low during interglacials. Large amplitude variations with long broad minima and maxima, associated with small migrations of the lysocline and the CCD (< 200 m), are indicative of the preservation/dissolution history in the Peru Basin. During the early Pleistocene, climatic forcing by the 41 kyr obliquity cycle is not observed in the carbonate record. During the last 800 kyr, variability in the carbonate record was dominated by the 100 kyr eccentricity cycle. Fluxes of biogenic material (calcium carbonate, organic carbon, opal, and barium) were greatest during glacials, which imply higher productivity and export production of the Peru Current during cold climatic periods. Dissolution was greatest during interglacials as inferred from the relatively poor preservation of planktonic foraminifera and from the low accumulation rate of carbonate. After the Mid-Brunhes Event (400 ka), we observe a plateaulike shift to enhanced dissolution and to intensified productivity.
Resumo:
Tectonic structure and anomalous distributions of geophysical fields of the Sea of Okhotsk region are considered; the lack of reliable data on age of the lithosphere beneath basins of various origin in the Sea of Okhotsk is noted. Model calculations based on geological and geophysical data yielded 65 Ma (Cretaceous-Paleocene boundary) age for the Central Okhotsk rise underlain by the continental lithosphere. This estimate agrees with the age (the end of Cretaceous) derived from seismostratigraphic data. A comparative analysis of theoretical and measured heat flows in the Akademii Nauk Rise, underlain by the thinned continental crust, is performed. The analysis points to a higher (by 20%) value of the measured thermal background of the rise, which is consistent with high negative gradient of gravity anomalies in this area. Calculations yielded 36 Ma (Early Oligocene) age and lithosphere thickness of 50 km for the South Okhotsk depression, whose seafloor was formed by processes of back-arc spreading. The estimated age of the depression is supported by kinematic data on the region; the calculated thickness of the lithosphere coincides with the value estimated from data of magnetotelluric sounding here. This indicates that formation time (36 Ma) of the South Okhotsk depression was estimated correctly. Numerical modeling performed for determination of the basement age of rifting basins in the Sea of Okhotsk gave the following estimates: 18 Ma (Early Miocene) for the Deryugin Basin, 12 Ma (Middle Miocene) for the TINRO Basin, and 23 Ma (Late Oligocene) for the West Kamchatka Trough. These estimates agree with formation time (Oligocene-Quaternary) of the sedimentary cover in rifting basins of the Sea of Okhotsk derived from geological and geophysical data. Model temperature estimates are obtained for lithologic and stratigraphic boundaries of the sedimentary cover in the Deryugin and TINRO Basins and the West Kamchatka Trough; the temperature analysis indicates that the latter two structures are promising for oil and hydrocarbon gas generation; the West Kamchatka Trough possesses better reservoir properties compared to the TINRO and Deryugin Basins. The latter is promising for generation of hydrocarbon gas. Paleogeodynamic reconstructions of the Sea of Okhotsk region evolution are obtained for times of 90, 66, and 36 Ma on the base of kinematic, geomagnetic, structural, tectonic, geothermal, and other geological and geophysical data.
Resumo:
Hyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of HyperKamiokande is the study of CP asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this paper, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis uses the framework and systematic uncertainties derived from the ongoing T2K experiment. With a total exposure of 7.5 MW × 10⁷ s integrated proton beam power (corresponding to 1.56 × 10²² protons on target with a 30 GeV proton beam) to a 2.5-degree off-axis neutrino beam, it is expected that the leptonic CP phase δCP can be determined to better than 19 degrees for all possible values of δCP , and CP violation can be established with a statistical significance of more than 3 σ (5 σ) for 76% (58%) of the δCP parameter space. Using both νe appearance and νµ disappearance data, the expected 1σ uncertainty of sin²θ₂₃ is 0.015(0.006) for sin²θ₂₃ = 0.5(0.45).
Resumo:
There exists an interest in performing pin-by-pin calculations coupled with thermal hydraulics so as to improve the accuracy of nuclear reactor analysis. In the framework of the EU NURISP project, INRNE and UPM have generated an experimental version of a few group diffusion cross sections library with discontinuity factors intended for VVER analysis at the pin level with the COBAYA3 code. The transport code APOLLO2 was used to perform the branching calculations. As a first proof of principle the library was created for fresh fuel and covers almost the full parameter space of steady state and transient conditions. The main objective is to test the calculation schemes and post-processing procedures, including multi-pin branching calculations. Two library options are being studied: one based on linear table interpolation and another one using a functional fitting of the cross sections. The libraries generated with APOLLO2 have been tested with the pin-by-pin diffusion model in COBAYA3 including discontinuity factors; first comparing 2D results against the APOLLO2 reference solutions and afterwards using the libraries to compute a 3D assembly problem coupled with a simplified thermal-hydraulic model.
Resumo:
Next generation PET scanners should fulfill very high requirements in terms of spatial, energy and timing resolution. Modern scanner performances are inherently limited by the use of standard photomultiplier tubes. The use of Silicon Photomultipliers (SiPMs) is proposed for the construction of a 4D-PET module of 4.8×4.8 cm2 aimed to replace the standard PMT based PET block detector. The module will be based on a LYSO continuous crystal read on two faces by Silicon Photomultipliers. A high granularity detection surface made by SiPM matrices of 1.5 mm pitch will be used for the x–y photon hit position determination with submillimetric accuracy, while a low granularity surface constituted by 16 mm2 SiPM pixels will provide the fast timing information (t) that will be used to implement the Time of Flight technique (TOF). The spatial information collected by the two detector layers will be combined in order to measure the Depth of Interaction (DOI) of each event (z). The use of large area multi-pixel Silicon Photomultiplier (SiPM) detectors requires the development of a multichannel Data Acquisition system (DAQ) as well as of a dedicated front-end in order not to degrade the intrinsic detector capabilities and to manage many channels. The paper describes the progress made on the development of the proof of principle module under construction at the University of Pisa.