341 resultados para PHOSPHOR
Resumo:
The field emission properties of nanostructured carbon films deposited by cathodic vacuum arc in a He atmosphere have been studied by measuring the emission currents and the emission site density. The films have an onset field of ∼ 3 V/μm. The emission site density is viewed on a phosphor anode and it increases rapidly with applied field. It is assumed that the emission occurs from surface regions with a range of field enhancement factors but with a constant work function. The field enhancement factor is found to have an exponential distribution.
Resumo:
A phosphor-conversion white light using an InGaN laser diode that emits 405 nm near-ultraviolet (n-UV) light and phosphors that emit in the red/green/blue region when excited by the n-UV light was fabricated. The relationship of the luminous flux and the luminous efficacy of the white light with injection current were discussed. Based on the evaluation method for luminous efficacy of light sources established by the Commission International de I'Eclairage (CIE) and the phosphor used in this experiment, a theoretical analysis of the experiment results and the maximum luminous efficacy of this white light fabrication method were also presented.
Resumo:
We fabricated a phosphor-conversion white light using an InGaN laser diode that emits 445 nm and phosphor that emit in the yellow. The InGaN laser diode was coupled to an optical fiber firstly and the phosphor was excited by the laser light output from the fiber. At 350 mA injection current the luminous flux and the luminous efficacy was 73 lm and 42.7 lm/W, respectively. The luminance was estimated to be 50 cd/mm(2). The relationship of the luminous flux and the luminous efficacy of the white light with injection current were measured and discussed.
Resumo:
We fabricated a phosphor-conversion white light using an InGaN laser diode that emits 445 nm and phosphor that emits in the yellow region when excited by the blue laser light. At 500 mA injection current the luminous flux and the luminous efficacy were 113 lm and 44 lm/W, respectively. The relationship of the luminous flux and the luminous efficacy of the white light with an injection current were discussed. Based on the evaluation method for luminous efficacy of light sources established by the Commission International de I'Eclairage (CIE) and the phosphor used in this experiment, a theoretical analysis of the experiment results and the maximum luminous efficacy of this white light fabrication method were also presented.
Resumo:
New observations on the luminescence Of In2S3 and europium-doped In2S3 nanoparticles show a green (5 10 nm) emission from In2S3 and In1.8Eu0.2S3 nanoparticles while a blue (425 nm) emission is observed from ln(1.6)Eu(0.4)S(3) nanoparticles. Both the blue and green emissions have large Stokes shifts of 62 and 110 nm, respectively. Excitation with longer-wavelength photons causes the blue emission to shift to a longer wavelength while the green emission wavelength remains unchanged. The lifetimes of both the green and blue emissions are similar to reported values for excitonic recombination. When doped with Eu3+, in addition to the broad blue and green emissions, a red emission near 615 nm attributed to Eu3+ is observed. Temperature dependences on nanoparticle thin films indicate that with increasing temperature, the green emission wavelength remains constant, however, the blue emission shifts toward longer wavelengths. Based on these observations, the blue emission is attributed to exciton recombination and the green emission to Indium interstitial defects. These nanoparticles show full-color emission with high efficiency, fast lifetime decays, and good stability; they are also relatively simple to prepare, thus making them a new type of phosphor with potential applications in lighting, flat-panel displays, and communications.
Resumo:
Deep level defects in as-grown and annealed n-type and semi-insulating InP have been studied. After annealing in phosphorus ambient, a large quantity of deep level defects were generated in both n-type and semi-insulating InP materials. In contrast, few deep level defects exist in InP after annealing in iron phosphide ambient. The generation of deep level defects has direct relation with in-diffusion of iron and phosphorus in the annealing process. The in-diffused phosphorus and iron atoms occupy indium sites in the lattice, resulting in the formation of P anti-site defects and iron deep acceptors, respectively. T e results indicate that iron atoms fully occupy indium sites and suppress the formation of indium vacancy and P anti-site, etc., whereas indium vacancies and P anti-site defects. are formed after annealing in phosphor-us ambient. The nature of the deep level defects in InP has been studied based on the results.
Resumo:
Phosphor-doped nano-crystalline silicon ((n))nc-Si:H) films are successfully grown on the p-type (100) oriented crystal silicon ((p) c-Si) substrate by conventional plasma-enhanced chemical vapor deposition method. The films are obtained using high H-2 diluted SiH4 as a reaction gas source and using PH3 as the doping gas source of phosphor atoms. Futhermore, the heterojunction diodes are also fabricated by using (n)nc-Si:H films and (p)c-Si substrate. I-V properties are investigated in the temperature range of 230-420K. The experimental results domenstrate that (n)nc-Si:H/(p) c-Si heterojunction is a typical abrupt heterojunction having good rectifing and temperature properties. Carrier transport mechanisms are tunneling - recombination model at forward bias voltages. In the range of low bias voltages ( V-F< 0.8 V), the current is determined by recombination at the (n)nc-Si:H side of the space charge region, while the current becomes tunneing at higher bias voltages( V-F>1.0 V). The present heterojunction has high reverse breakdown voltage ( > - 75 V) and low reverse current (approximate to nA).
Resumo:
A novel electroluminescence oxide phosphor (Gd2O3-Ga2O3):Ce has been prepared by electron beam evaporation. The emission peaks of photoluminescence lie at 390nm and a shoulder at 440nm. However, the electroluminescence of the (Gd2O3-Ga2O3):Ce thin film have four emission peaks at 358nm, 390nm, 439nm and 510nm, respectively. The optical absorption of (Gd2O3-Ga2O3):Ce thin film and the photoluminescence of composite materials with various ratios of Ga2O3/(Gd2O3+Ga2O3) have also been described to investigate the origin of emission of photoluminescence and electroluminescence.
Resumo:
Al-doped and B, Al co-doped SiO2 xerogels with Eu2+ ions were prepared only by sol-gel reaction in air without reducing heat-treatment or post-doping. The luminescence characteristics and mechanism of europium doping SiO2 xerogels were studied as a function of the concentration of Al, B, the europium concentration and the host composition. The emission spectra of the Al-doped and B, Al codoped samples all show an efficient emission broad band in the blue violet range. The blue emission of the Al-doped sample was centered at 437 nm, whereas the B, Al co-doped xerogel emission maximum shifted to 423 nm and the intensity became weaker. Concentration quenching effect occurred in both the Al-doped and B, Al co-doped samples, which probably is the result of the transfer of the excitation energy from Eu2+ ions to defects. The highest Eu2+ emission intensity was observed for samples with the Si(OC2H5)(4):C2H5OH:H2O molar ratio of 1:2:4. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
分别采用喷雾热解法、溶胶-凝胶法、共沉淀法和固相法合成了Y<,3>Al<,5>O<,12>:Eu<'3+>发光粉,并且比较了不同方法制备的发光粉的结晶过程和发光性质.通过比较我们发现,与其他三种方法相比,喷雾热解法结晶温度低、合成的发光粉具有球形形貌、且发光强度较大,是一种比较理想的合成发光粉的方法.
Resumo:
利用溶胶-凝胶法合成了一系列稀土离子掺杂的发光薄膜,包括三元氧磷灰石稀土硅酸盐Ca2RS(SiO4)6O2(R=YGd)体系,YVO4体系,LaPO4体系以及钒磷酸盐形成的固熔体体系1并研究了稀土离子Eu3+,Tb3+,Dy3+,Sm3+,Er3+和类汞离子Pb2+在这些薄膜中的发光性质和能量传递性质。同时利用软石印法结合毛细管微模板技术实现了发光薄膜的图案化。SEM以及AFM结果表明,利用溶胶一凝胶法制备的发光薄膜表面致密均匀,无开裂。通过增加镀膜溶液的粘度、镀膜的次数可以有效的控制薄膜的厚度,使其达到理想的范围。由此可见溶胶一凝胶法是一种比较理想的制备发光薄膜的方法。在三元氧磷灰石稀土硅酸盐Ca2R8(SiO4)6O2(R=YGd)体系中,稀土离子Eu3+,Tb3+在Ca2Y8(SiO4)6O2基质中占据低刘·称性格位6h(Cs)和4f(C3),并以其特征的红光发射(5Do-7F2)和绿光发射(5D4-7F5)为主。Eu3+,Tb3+发光的最佳浓度分别为Y3+的10mol%和6mol%,Ca2Y8(51O4)6O2:Eu3+薄膜样品的发光强度和寿命随着烧结温度的升高而增加,Ca2Y8(SiO4)6O2:Tb3+薄膜样品的发光强度和寿命在800℃时最大,随后又随烧结温度的升高有所下降,Pb2+可以敏化Ca2Gd8(SiO4 )6O2中Gd3+的基质晶格,通过Pb2+→Gd3十→(Gd3+)n→A3+形式传递和转移能量。在YVO4体系中,利用Pechini溶胶一凝胶法以无机盐为主要原料,柠檬酸为络合剂,利用聚乙二醇调节镀膜溶液的粘度,制备了YvO4:A(A=Eu3+ Dy3+,Sm3+,Er3+)纳米发光薄膜。结合软石印法,通过简单工艺实现了发光薄膜图案化烧结过程中图案化薄膜有一定程度的收缩,存在一定的缺陷。得到的条纹在紫外灯下发出明亮的红光。掺杂的稀土离子在YVO4薄膜中显示它们特征发射,同时VO43-和稀土离子之间存在能量传递。Dy3+,Sm3+,Er3十发光的最佳浓度皆为Y3+的2mol%,这三者的发光淬灭是由交叉驰豫引起的。在LaPO4发光薄膜中,Etl3+以591nm的5Do-7Fl跃迁发射为主,呈现红橙光;Tb3+以543nm的5D4-7F5发射为主,属于绿光发射。Ce3+则由其特有的5d-4f双峰发射组成。Tb3+和Eu3+掺杂的样品发光强度和荧光寿命随烧结温度的升局而增加。Tb3+和Eu3+的寿命曲线符合指数衰减,但Tb3十在LaPO4:Ce,Tb薄膜中,所得的寿命曲线不符合单指数衰减。Ce3+和Tb3+之间存在吸收能量传递。通过计算得到能量传递效率可以达到95%以上。XRD结果表明,从x=0到x=1 YVxP1-xO4:Eu3+薄膜形成了一系列具有错石结构的固熔体。在YVxP1-xO4:Eu3+(0≤x≤1)系列薄膜中,随着x值的增加,Eu3+的发光强度和红橙比逐渐增大。除x=0,其它的Eu3+的红橙比都大于1,说明在发射光谱中,以Eu3+禁戒5Do一7F2电偶极跃迁为主,Etls十在基质中处于低对称性格位。当x=0时,即Y0.98Eu0.l2PO4薄膜中,Eu3+,仍处于D2d低对称性格位,但5D0一7FI橙光发射却比SD0一7F2红光发射强。x对Y0.98Eu0.02VxP1-xO4(0≤x≤l)薄膜寿命曲线有很大的影响,当0≤x≤0.5时,Eu3+5 D0-7F2发射呈单指数衰减;当x≥0.6时,Eu3+5D0-7F2发射的衰减曲线比较复杂,不能用单指数拟合。YVxP1-xO4:A3+(0≤x≤1,A=Er,Sm)薄膜中,由于存在VO43-A3+,以及VO43-(VO43-)n-A3+(n≥1)形式的能量传递,同时由于浓度淬灭,VO43-的蓝光发射在0.1≤x≤1范围内,随x的增加而减弱,当x=1时,VO43-的蓝光发射被完全淬灭,而A3+发光强度随x的增加而增加。在RVO4:A3+(R=Y,La,Gd,A=Eu,Sm,Er)纳米发光薄膜中,R对稀土离子发光性质的影响主要是由于基质晶体结构的不同。A3+在YVO4和GdVO4中属于D2d对称性,在YVO4和GdVO4薄膜中A3+的光谱性质基本相同,而LaVO4属于单斜晶系,具有独居石结构。A3+在LaVO4中属于C1对称性。C1对称性比D2d对称性低,A3+的发光光谱中谱线的位置以及谱线的劈裂数目都略有不同。由于Gd3+和发光离子之间的能量传递,A3+在GdVO4基质中的发光最强。
Resumo:
利用瑞利波信息反演层状半空间介质的性质和状态,是地震勘探、岩土工程、及超声检测领域关注的研究课题。本文由层状半空间瑞利波的实验数据,分析给出了层状半空间中瑞利波的传播模式和频散曲线,并进而利用基阶和(或)高阶模式瑞利波频散曲线反演了层状介质参数。本文分别用数值模拟和实验分析进行了深入的研究。在数值模拟中,采用地震勘探中常用的爆炸点源激发产生的瑞利波,利用频率波数分析方法分析了层状半空间瑞利波的频散,考察了源检距,道间距,接收道数目等因素对频散曲线的影响,给出了这些参数的定量要求。研究表明频率波数分析方法得到的频散曲线和按激发强度占主导的模式随频率的变化而形成的跳跃频散曲线一致。对于速度递增的层状半空间,反演时可以仅考虑基阶模式的瑞利波频散曲线,对于含有低速层的层状半空间,则必须考虑模式跳跃后形成的“之”字形频散曲线。在用遗传算法反演介质参数时,也必须考虑激发强度占主导地位的模式随频率的变化,从而恰当地设计目标函数,才能得出对层状介质参数的正确反演。在超声实验中,用表面圆形法向力源激发的瑞利波,对三个层状半空间模型,即均匀半空间,速度递增的两层半空间,含低速层的三层半空间,利用我们实验室自行研制的数字式多通道发射和接收系统,进行了超声探测实验。通过对实验得到的多道瑞利波信号,利用频率波数分析的方法得到了和理论结果一致的实验频散曲线,并基此利用遗传算法实现了层状介质参数的正确反演,得到了和实际介质参数相符的反演结果。数值模拟和实验研究的结果均表明,由实验数据正确给出频散曲线和相应的采用遗传算法发展的适合层状半空间介质的反演方法,是一种优良的反演方法,一般可以找到全局的最优解。获得介质性状较好反演结果的原因,是因为我们首次考虑到了由激发强度决定的占主导地位的模式随频率的变化规律,对应地我们建立了爆炸点源和表面法向力源激发下,分层半空间多模瑞利波模式分析及频散曲线获取和介质参数反演的系统方法。此外,本文最后为了与频率波数分析的结果进行对比,研究了时频分析方法一魏格纳维尔分布,用数值模拟和实验结果分析了层状介质中瑞利波的频散曲线。结果表明时频分析方法获得的频散曲线不及多道频率波数分析得到的瑞利波频散曲线准确。不过由于时频分析仅需要一个接收道的数据就能给出结果,比多道频率波数分析方法要简便,如果能对此方法加以改进,还是一种具有前景的分析方法。总的来说,本文系统地给出了用瑞利波反演分层半空间介质性质和层厚的方法,并给出了相应的软件。数值模拟和实验研究表明,本文给出的建立在严格理论基础上的方法,为用瑞利波探测地层和超声探测层状介质,奠定了可靠的基础。在此基础上,进一步发展相应的系统解释软件,可望能提供给地层勘探,层状材料和薄膜的超声探测等领域应用。
Resumo:
Here we report the electron migration by photo- or thermostimulation in BaFCl:Eu2+. Electrons released from F centers may be trapped by other defect sites to form F aggregates or another type of F center and vice versa. This migration reduces the photostimulated luminescence efficiency, lowers the imaging plate sensitivity, and causes the difference between the optical absorption and photostimulation spectra of color centers. (C) 1997 American Institute of Physics.
Resumo:
土壤微生物量、可溶性有机碳与氮虽然只占土壤有机碳、氮总量的较小部分,但可以在土壤全碳、氮变化之前反映土壤微小的变化,又直接参与土壤生物化学转化过程,因而在植被恢复过程中,较其它土壤理化性质等能够更好地指示土壤恢复情况。在青藏高原东缘存在大面积的次生人工林替代灌丛或采伐迹地,而关于这些人工林替代后的生态效果和生态过程的评估却十分缺乏,本研究通过评估岷江上游植被恢复重建过程中典型人工替代次生植被凋落物层与土壤碳、氮等养分大小,动态监测土壤微生物生物量、水溶性碳、氮等指标,结合温度与凋落物输入等影响土壤活性有机碳、氮因子的控制试验,系统分析不同人工替代次生植被土壤碳、氮等养分的差异原因,试图寻找低效人工林优化调控与持续管理技术,为区域生态公益林持续管理提供理论和技术依据。主要结论如下: 1. 通过对不同人工替代次生植被凋落物层和土壤碳、氮分析发现,油松和华山松人工林替代次生灌丛后土壤碳、氮含量较灌丛和阔叶人工林低,主要原因可能为凋落物质量(C/N)较差,而引起碳、氮等元素难以归还土壤。进而通过对不同人工替代次生植被凋落物层和土壤微生物生物量、水溶性有机碳、氮等指标的季节性动态模式的分析,发现各次生植被土壤微生物生物量C、N,P以及土壤水溶性碳、氮含量均呈明显季节性动态,呈现秋季明显大于其它季节,冬季最低,在表层土壤最为明显。 2. 油松、华山松人工林凋落物层和土壤水溶性有机碳(WDOC)、土壤水溶性有机氮(WDON)明显低于灌丛和连香树,土壤微生物生物量C、N也以油松和华山松人工林最低,而落叶类植被,如灌丛、连香树和落叶松之间没有明显差异,说明可利用底物的数量和质量差异是影响各次生植被凋落物分解和土壤微生物活性的主要原因。MBC/OC和MBN/ON能较好地指示土壤微生物活性的变化,MBC/OC凋落层总体以灌丛和连香树人工林最高,油松和华山松人工林最低;而土壤中MBC/OC连香树人工最高,华山松人工林最低。说明以油松和华山松为主的人工造林替代乡土阔叶灌丛造成土壤C、N等养分严重匮乏,微生物活性低下是影响其养分周转的主要原因。 3. 从各次生植被凋落物产生看,凋落物年归还量最大的为华山松人工林(5.1×103 kg ha-1),其次为落叶松人工林(4.8×103 kg ha-1),阔叶灌丛林地凋落物产生总量(4.4×103 kg ha-1)略大于油松人工林(4.2×103 kg ha-1),最小的为连香树人工林(3.6×103 kg ha-1);叶是凋落物的主体,落叶类树种月动态表现为单峰型,高峰主要在10-11月,如落叶松、连香树和灌丛林;常绿的松类月动态不明显,各月基本相同,最为明显地为油松林,华山松人工林略有二个小峰,分别出现在11月和5月。落叶阔叶灌丛的凋落物分解速率大于常绿针叶林,如油松和华山松。结合凋落物的产生量和分解速率,不同树种人工林替代次生阔叶灌丛后,人工油松和华山松林枯落物总贮量和厚度明显大于落叶松人工林、灌丛林和连香树人工林,说明以油松和华山松为主的人工造林替代乡土阔叶灌丛延缓了有机物向土壤的顺利归还,不利于土壤C、N等养分循环。 4. 通过控制地面凋落物和地下根系输入有机物对土壤碳、氮的影响研究发现,(1) 单独去除根系以及根系与地面凋落物同时去除处理1年后对表层(0-10cm)土壤WDOC均没有显著影响,而土壤WDON显著增加,油松人工林土壤微生物生物量C、N显著降低,人工落叶松林没有显著差异,说明油松人工林土壤微生物活性对地下碳输入的依赖大于其它次生植被,而落叶松土壤微生物活性对地下碳输入依赖性较小;去除地面凋落物,明显降低了落叶松人工林土壤WDOC,华山松和连香树土壤WDON均较对照显著减少,油松人工林土壤微生物量C较对照显著减少;双倍增加地面凋落物处理对土壤微生物生物量、WDOC和WDON没有明显地增加,相反,连香树、华山松和油松人工林土壤WDON较对照减少。说明油松人工林微生物活性不仅依赖于地下碳输入,而且对地上有机物输入的依赖性也较大;连香树、落叶松和华山松人工林土壤微生物生物量并没有因地面凋落物的去除减少可能与土壤总有机碳含量及活性均较高有关,而双倍增加地面凋落物反而降低了土壤微生物生物量,说明凋落物覆盖后改变了土壤微气候。 5. 碳矿化累积量与有机碳含量和活性有机碳含量之间存在显著地正相关关系。凋落物碳累积矿化量、矿化速率以连香树最高,油松和华山松人工林次之,落叶阔叶灌丛低于常绿针叶纯林,导致其差异的主要原因可能为凋落物产生的时间动态模式不一样,致使凋落物起始分解时间不一致。而土壤层有机碳矿化速率和矿化量以阔叶落叶灌丛和连香树最高,油松和华山松人工土壤最低,再次证实利用针叶纯林恢复植被阻碍了有机质周转与循环。 6. 凋落物累积矿化量与C/N值呈显著地相关关系,并随着温度的升高而明显增加,而土壤累积矿化量与C/N值没有显著相关关系,说明土壤有机碳质量(C/N)对温度的响应不十分明显。通过双指数模型对不同温度下碳矿化过程进行模拟和计算出活性有机碳与惰性有机碳比例,发现温度升高促进了惰性有机碳向活性有机碳的转化,增加了活性有机碳含量,说明温度升高可促进次生植被凋落物与土壤有机质的分解,进而可影响到林地碳源/汇关系的变化。 综上,通过对不同人工替代次生植被凋落物与土壤C、N大小、以及土壤微生物生物量、水溶性C、N等指标动态变化模式研究,结合温度与凋落物数量输入等影响土壤活性C、N因子的综合分析,以油松和华山松人工纯林对山地植被恢复,延缓或阻碍了有机质周转与循环,造成了土壤肥力退化。对现有低效人工纯林改造,应为地面大量有机物分解创造条件。 Although soil microbial biomass, dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) are a small part of total soil organic carbon and nitrogen, they can directly participate in the process of soil biochemical translation and indicate the fine changes before changes of soil total organic carbon and nitrogen occur. So, they are good indexes to indicate soil restoration condition during the process of vegetation rehabilitation. There are large areas of secondary vegetations which substitute for indigenous shrubs in the eastern fringe of Qinghai-Tibet Plateau. However, it is not well known that the ecological effect and process after substitution by different secondary plantations. Based on comparison of soil organic and nitrogen contents in litter layer and soil under different secondary vegetations in upper reaches of Minjiang River, soil microbial biomass, DOC and DON in litter layer and soil were investigated in order to analyze the seasonal dynamic. Combining the effects of temperature, litter input and root exclusion on soil microbial biomass, DOC and DON, we also aim to understand the reason and mechanism of difference in soil carbon and nitrogen contents among different secondary vegetations. The study would contribute to comprehensively understanding C and N cycling processes and provide optimal control and sustainable technology of low-effect plantations in these regions. The results are as follows: (1) Organic carbon and nitrogen in litter layers and soil under different substitution plantations were investigated. The results showed that contents of soil organic carbon and nitrogen were lower in P. tabulaeformis (PT) and P. armandi Franch(PA) than those in native broad-leaf shrub and broad-leaf plantation. The low quality (C/N) of litter in PT and PA plantations caused carbon and nitrogen returning to soil difficultly. Seasonal dynamic of soil microbial carbon (MBC),-nitrogen (MBN),-phosphor (MBP), and WDOC and WDON showed similar pattern, which had the highest values in autumn and the lowest values in winter. (2) WDOC and WDON in litter layers and soil under PT and PA plantations were significantly lower than those in native broad-leaf shrub and Cercidiphyllum japonicum Sieb. et Zucc.(CJ). Soil MBC and MBN were also the lowest, while there were no significant differences among deciduous vegetations, i.e. native broad-leaf shrub, CJ and Larix kaempferi Lamb.(LK) plantation. The results suggested that difference in quantity and quality of available substance was main reason that affected the activity of microbe in soil and litter layer. MBC/OC and MBN/ON were good indexes to indicate the change of soil microbial activity. MBC/OC of litter had the highest value under native broad-leaf shrub and CJ plantation, and had the lowest value in PT and PA plantations, while MBC/OC of soil was the highest under CJ plantation, and was the lowest in PT and PA plantations. These results indicated that PT and PA plantations substituting for native broad-leaf shrub caused deficit of carbon and nitrogen in soil, low microbial activity was a main reason influencing the cycling and turnover of carbon and nitrogen in soil. (3) The annual litter fall production, composition, seasonal dynamic and decomposition of five typical secondary stands in upper reaches of Minjiang River were studied in this paper. The annual litter productions were: PA (5.1×103 kg ha-1), LK(4.8×103 kg ha-1), native broad-leaf shrub (4.4×103 kg ha-1), PT(4.2×103 kg ha-1),CJ(3.6×103 kg ha-1). The litter production of leaves in five secondary vegetations occupied a higher percentage in the annual total litter production than those of other components. The litterfall was mostly producted in the cool and dry period (October-November) for deciduous vegetations and relatively equably producted in every season for evergreen coniferous vegetations. The decomposition rate of leaf litter in the broad-leaf stand was higher than those in evergreen coniferous stand. Combined with annual litter fall production and decomposition rate of leaf litter, we found that stock and depth of litter layer were significantly larger in PT and PA plantations than those in native broad-leaf shrub, LK and CJ plantations. The results confirmed that PT and PA plantations substituting for native broad-leaf shrub delayed organic matter returning to soil and hindered cycling of carbon and nitrogen again. (4) We explored plant litter removal, double litter addition, root trenching, and combining root trenching and litter removal treatments to examine the effects of above- and belowground carbon inputs on soil microbial biomass, WDOC and WDON in four secondary plantations. During the experimental period from June 2007 to July 2008, 1 year after initiation of the treatments, WDOC in soil did not vary in root trenching, and combining root trenching and litter removal treatments, while WDON in soil significantly increased compared with CK treatment. Root trenching reduced soil MBC and MBN in PT plantation, while MBC and MBN in soil did not vary in LK plantation. The rasults implied that soil microbial activity was more dependent on belowground carbon input in PT plantation than those in other secondary plantations, on the contrary, soil microbial activity in LK plantation was not dependent on belowground carbon input. Plant litter removal significantly decreased soil WDOC in LK plantation, decreased WDON in PA and CJ plantations, and also significantly reduced soil MBC in PT plantation. However, double litter addition did not increase soil microbial biomass, WDOC and WDON, on the contrary, soil WDON in CJ, PA and PT plantations were decreased. These suggested that soil microbial activity was not only dependent on belowground carbon input, but also on aboveground organic material input. Double litter addition could change the microclimate and result in the decrease of soil microbial activity in CJ, PA and PT plantations. (5) We measured carbon mineralization in a 107 days incubation experiment in 5℃,15℃ and 25℃. Carbon cumulative mineralization was positively correlated with organic matter and labile organic carbon in litter layer and soil. Cumulative carbon mineralization and mineralization rate of litter layers in PT and PA plantations were higher than that in native broad-leaf shrub. This difference between native broad-leaf shrub and coniferous plantations in cumulative carbon mineralization and mineralization rate of litter layers could be attributed to the initiating time of decomposition due to the difference in seasonal dynamic of litter fall production between two types of secondary plantations. However, cumulative carbon mineralization and mineralization rate in soil were the highest in native broad-leaf shrub and CJ plantation, and were the lowest in PT and PA plantations. This also confirmed that PT and PA plantations substituting for native broad-leaf shrub hindered the cycling and turnover of organic matter again. (6) Carbon cumulative mineralization was positively correlated with C/N in litter layer and increased with temperature increasing, while carbon cumulative mineralization was not correlated with C/N in soil. This indicated that soil organic matter quality (C/N) was insensitive to temperature. Applying bi-exponential model, we computed the percent of labile and stable carbon in different temperature incubation and found that temperature increasing would accelerate the transform from stable carbon to labile carbon and increase the percentage of labile organic carbon. This illuminated that temperature incraesing could facilitate the decomposition of litter and soil organic matter in secondary vegetations and hence affect the relationship between carbon source and sink.
Resumo:
Electrically active defects in the phosphor-doped single-crystal silicon, induced by helium-ion irradiation under thermal annealing, have been investigated. Isothermal charge-sensitive deep-level transient spectroscopy was employed to study the activation energy and capture cross-section of helium-induced defects in silicon samples. It was shown that the activation energy levels produced by helium-ion irradiation first increased with increasing annealing temperature, with the maximum value of the activation energy occurring at 873K, and reduced with further increase of the annealing temperature. The energy levels of defects in the samples annealed at 873 and 1073K are found to be located near the mid-forbidden energy gap level so that they can act as thermally stable carrier recombination centres.