188 resultados para PFGE
Resumo:
Genetic characterization of methicillin-resistant Staphylococcus pseudintermedius (MRSP) from Thailand and Israel revealed the presence of a predominant atypical clonal lineage which was not typeable by SmaI-PFGE and SCCmec typing. All the atypical isolates (n = 34) belonged to CC45 (30 ST45 and 2 ST179 isolates, 1 ST57 isolate, and 1 ST85 isolate). The isolates originated from healthy and diseased dogs and cats, as well as from the environment of one clinic. Cfr9I-pulsed-field gel electrophoresis (Cfr9I-PFGE) and dru typing permitted the further distinction of CC45 isolates from the two different countries. Microarray analysis identified genes that confer resistance to β-lactams (mecA; blaZ), aminoglycosides [aac(6')-Ie-aph(2')-Ia; aph(3')-III; ant(6)-Ia], macrolides and lincosamides [erm(B)], tetracyclines [tet(M)], trimethoprim [dfr(G)], streptothricin (sat4), and chloramphenicol (catpC221). Fluoroquinolone resistance was attributed to specific amino acid substitutions, i.e., Ser84Leu in GyrA and Ser80Ile and Asp84Asn in GrlA. A novel pseudo-staphylococcal cassette chromosome (ΨSCCmec57395) element was identified in MRSP strain 57395 (sequence type ST45) by whole-genome sequencing. The 12,282-bp ΨSCCmec57395 element contained a class C1 mec gene complex but no ccr genes. In addition to the methicillin resistance gene mecA, ΨSCCmec57395 also carried determinants of resistance to heavy metals, such as arsenic, cadmium, and copper. Bsu36I restriction analysis of the ΨSCCmec57395 element amplified by long-range PCR revealed the presence of ΨSCCmec57395 in the 33 additional isolates of MRSP CC45. The ΨSCCmec57395 element represents a new class of SCCmec and has been identified in MRSP of CC45, which is a predominant clonal lineage in Israel and Thailand.
Resumo:
Enterococcus faecium has emerged as an important nosocomial pathogen worldwide, and this trend has been associated with the dissemination of a genetic lineage designated clonal cluster 17 (CC17). Enterococcal isolates were collected prospectively (2006 to 2008) from 32 hospitals in Colombia, Ecuador, Perú, and Venezuela and subjected to antimicrobial susceptibility testing. Genotyping was performed with all vancomycin-resistant E. faecium (VREfm) isolates by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing. All VREfm isolates were evaluated for the presence of 16 putative virulence genes (14 fms genes, the esp gene of E. faecium [espEfm], and the hyl gene of E. faecium [hylEfm]) and plasmids carrying the fms20-fms21 (pilA), hylEfm, and vanA genes. Of 723 enterococcal isolates recovered, E. faecalis was the most common (78%). Vancomycin resistance was detected in 6% of the isolates (74% of which were E. faecium). Eleven distinct PFGE types were found among the VREfm isolates, with most belonging to sequence types 412 and 18. The ebpAEfm-ebpBEfm-ebpCEfm (pilB) and fms11-fms19-fms16 clusters were detected in all VREfm isolates from the region, whereas espEfm and hylEfm were detected in 69% and 23% of the isolates, respectively. The fms20-fms21 (pilA) cluster, which encodes a putative pilus-like protein, was found on plasmids from almost all VREfm isolates and was sometimes found to coexist with hylEfm and the vanA gene cluster. The population genetics of VREfm in South America appear to resemble those of such strains in the United States in the early years of the CC17 epidemic. The overwhelming presence of plasmids encoding putative virulence factors and vanA genes suggests that E. faecium from the CC17 genogroup may disseminate in the region in the coming years.
Resumo:
In this study, we present a trilocus sequence typing (TLST) scheme based on intragenic regions of two antigenic genes, ace and salA (encoding a collagen/laminin adhesin and a cell wall-associated antigen, respectively), and a gene associated with antibiotic resistance, lsa (encoding a putative ABC transporter), for subspecies differentiation of Enterococcus faecalis. Each of the alleles was analyzed using 50 E. faecalis isolates representing 42 diverse multilocus sequence types (ST(M); based on seven housekeeping genes) and four groups of clonally linked (by pulsed-field gel electrophoresis [PFGE]) isolates. The allelic profiles and/or concatenated sequences of the three genes agreed with multilocus sequence typing (MLST) results for typing of 49 of the 50 isolates; in addition to the one exception, two isolates were found to have identical TLST types but were single-locus variants (differing by a single nucleotide) by MLST and were therefore also classified as clonally related by MLST. TLST was also comparable to PFGE for establishing short-term epidemiological relationships, typing all isolates classified as clonally related by PFGE with the same type. TLST was then applied to representative isolates (of each PFGE subtype and isolation year) of a collection of 48 hospital isolates and demonstrated the same relationships between isolates of an outbreak strain as those found by MLST and PFGE. In conclusion, the TLST scheme described here was shown to be successful for investigating short-term epidemiology in a hospital setting and may provide an alternative to MLST for discriminating isolates.
Resumo:
Modulation of tumor hypoxia to increase bioreductive drug antitumor activity was investigated. The antivascular agent 5,6-dimethylxanthenone acetic acid (DMXAA) was used in combination studies with the bioreductive drugs Tirapazamine (TPZ) and Mitomycin C (MMC). Blood perfusion studies with DMXAA showed a maximal reduction of 66% in tumor blood flow 4 hours post drug administration. This tumor specific decrease in perfusion was also found to be dose-dependent, with 25 and 30 mg/kg DMXAA yielding greater than 50% reduction in tumor blood flow. Increases in antitumor activity with combination therapy (bioreductive drugs $+$ DMXAA) were significant over individual therapies, suggesting an increased activity due to increased hypoxia induced by DMXAA. Combination studies yielded the following significant tumor growth delays over control: MMC (5mg/kg) $+$ DMXAA (25mg/kg) = 20 days, MMC (2.5mg/kg) $+$ DMXAA (25 mg/kg) = 8 days, TPZ (21.4mg/kg) $+$ DMXAA (17.5mg/kg) = 4 days. The mechanism of interaction of these drugs was investigated by measuring metabolite production and DNA damage. 'Real time' microdialysis studies indicated maximal metabolite production at 20-30 minutes post injection for individual and combination therapies. DNA double strand breaks induced by TPZ $\pm$ DMXAA (20 minutes post injection) were analyzed by pulsed field gel electrophoresis (PFGE). Southern blot analyses and quantification showed TPZ induced DNA double strand breaks, but this effect was not evident in combination studies with DMXAA. Based on these data, combination studies of TPZ $+$ DMXAA showed increased antitumor activity over individual drug therapies. The mechanism of this increased activity, however, does not appear to be due to an increase in TPZ bioreduction at this time point. ^
Resumo:
This study was undertaken to evaluate the specificity and efficiency of different methods to detect Escherichia coli K-12 strains. Another aim was to determine the frequency of E. coli K-12 strains among wild-type E. coli isolates from different sources. The detection of K-12 strains was performed both genotypically by K-12 specific polymerase chain reaction (PCR) and on the basis of phenotypical tests. In addition, the genome structures of E. coli strains were characterized by pulsed-field gel electrophoresis (PFGE). The most specific results could be obtained by the genotypical tests PCR and PFGE as well as by the K-12 specific phage assay. In total, 131 stool and 95 water isolates as well as 14 K-12 derivatives were examined by the different methods. No E. coli K-12 strains were detected among the wild-type isolates.
Resumo:
A total of 210 food samples originating from milk products, ready-to-eat salads, raw meat and raw meat products purchased in ten open-air market places in Thessaloniki, Greece, were analyzed for the presence of Listeria monocytogenes. Thirty (14.3%) contained L. monocytogenes with the highest prevalence in raw meat (27.5%), raw meat products (18%) and cheese (8%). The strains were susceptible to 16 antimicrobials as determined by microbroth dilution, except one strain which displayed resistance to tetracycline (MIC > 32 μg/ml). This strain carried the tetracycline resistance gene tet(M). Pulsed-field gel electrophoresis (PFGE) revealed a low genetic diversity among the isolates, irrespective of their origin. This suggests that dominant L. monocytogenes clones are widespread in different food product types in open-air food markets in Greece. The high prevalence of L. monocytogenes in these products indicates that appropriate hygienic measures and periodic bacteriological controls are also necessary in open-air food markets to reduce contamination with food-borne pathogens. Greek specialties made with raw meat and raw milk may contain L. monocytogenes and should not be consumed by persons at risk.
Resumo:
AIMS This study was to investigate and to characterize methicillin-resistant coagulase-positive staphylococci (MRCoPS) harboring in dogs and people associated with dogs in Thailand. METHODS AND RESULTS Staphylococci were collected from 100 dogs, 100 dog owners, 200 small animal veterinarians and 100 people without pet association. Species of MRCoPS were identified phenotypically and genotypically. Molecular characteristics were determined by multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE) and SCCmec typing, and antimicrobial susceptibility was assayed by broth microdilution and by microarray analysis for resistance genes. Methicillin-resistant Staphylococcus pseudintermedius (MRSP), methicillin-resistant Staphylococcus schleiferi subsp. coagulans (MRSSc) and methicillin-resistant Staphylococcus aureus (MRSA) were isolated from dogs (45, 17 and 1%, respectively), veterinarians (8, 2 and 1·5%, respectively) and dog owners (3, 2 and 0%, respectively). Seventeen sequence types (STs) were identified among 83 MRSP isolates which specifically carried SCCmec V, II-III, ΨSCCmec57395 and three uncharacterized SCCmec types. MRSP ST 45, 68 and novel STs including 169, 178, 181 and 183 were shared among canine and human isolates. Most of MRSA ST398 and MRSSc carried SCCmec type V. The MRCoPS commonly displayed multiple resistances to tested antimicrobials and carried various resistance genes. CONCLUSION Variety of MRCoPS, especially new MRSP clones, distributed in dogs and people in Thailand. SIGNIFICANCE AND IMPACT OF THE STUDY The existence of MRCoPS circulating between dogs and humans in Thailand provides indirect evidence of interspecies transmission and represents a potential public health hazard.
Resumo:
Listeria (L.) monocytogenes causes orally acquired infections and is of major importance in ruminants. Little is known about L. monocytogenes transmission between farm environment and ruminants. In order to determine potential sources of infection, we investigated the distribution of L. monocytogenes genetic subtypes in a sheep farm during a listeriosis outbreak by applying four subtyping methods (MALDI-TOF-MS, MLST, MLVA and PFGE). L. monocytogenes was isolated from a lamb with septicemia and from the brainstem of three sheep with encephalitis. Samples from the farm environment were screened for the presence of L. monocytogenes during the listeriosis outbreak, four weeks and eight months after. L. monocytogenes was found only in soil and water tank swabs during the outbreak. Four weeks later, following thorough cleaning of the barn, as well as eight months later, L. monocytogenes was absent in environmental samples. All environmental and clinical L. monocytogenes isolates were found to be the same strain. Our results show that the outbreak involving two different clinical syndromes was caused by a single L. monocytogenes strain and that soil and water tanks were potential infection sources during this outbreak. However, silage cannot be completely ruled out as the bales fed prior to the outbreak were not available for analysis. Faeces samples were negative, suggesting that sheep did not act as amplification hosts contributing to environmental contamination. In conclusion, farm management appears to be a crucial factor for the limitation of a listeriosis outbreak.
Resumo:
Background. Pulsed-field gel electrophoresis (PFGE) is a laboratory technique in which Salmonella DNA banding patterns are used as molecular fingerprints for epidemiologic study for "PFGE clusters". State and national health departments (CDC) use PFGE to detect clusters of related cases and to discover common sources of bacteria in outbreaks. ^ Objectives. Using Houston Department of Health and Human Services (HDHHS) data, the study sought: (1) to describe the epidemiology of Salmonella in Houston, with PFGE subtype as a variable; and (2) to determine whether PFGE patterns and clusters detected in Houston were local appearances of PFGE patterns or clusters that occurred statewide. ^ Methods. During the years 2002 to 2005, the HDHHS collected and analyzed data from routine surveillance of Salmonella. We implemented a protocol, between May 1, 2007 and December 31, 2007, in which PFGE patterns from local cases were sent via e-mail to the Texas Department of State Health Services, to verify whether the local PFGE patterns were also part of statewide clusters. PFGE was performed from 106 patients providing a sample from which Salmonella was isolated in that time period. Local PFGE clusters were investigated, with the enhanced picture obtained by linking local PFGE patterns to PFGE patterns at the state and national level. ^ Results. We found that, during the years 2002 to 2005, there were 66 PFGE clusters, ranging in size from 2 to 22 patients within each cluster. Between different serotypes, there were marked differences in the sizes of PFGE clusters. A common source or risk factor was found in fewer than 5 of the 66 PFGE clusters. With the revised protocol, we found that 19 of 66 local PFGE patterns were indistinguishable from PFGE patterns at Texas DSHS. During the eight months, we identified ten local PFGE clusters with a total of 42 patients. The PFGE pattern for eight of the ten clusters matched the PFGE patterns for cases reported to Texas DSHS from other geographic areas. Five of the ten PFGE patterns matched PFGE patterns for clusters under investigation at PulseNet at the national level. HDHHS epidemiologists identified a mode of transmission in two of the ten local clusters and a common risk factor in a third local cluster. ^ Conclusion. In the extended-study protocol, Houston PFGE patterns were linked to patterns seen at the state and national level. The investigation of PFGE clusters was more efficacious in detecting a common transmission when local data were linked to state and national data. ^
Resumo:
La clasificación en subtipos moleculares de los aislados de L. monocytogenes procedentes de productos cárnicos y del ambiente de las plantas de procesado donde se elaboran, habitualmente muestra la presencia de un reducido número de cepas y la persistencia durante largos periodos de tiempo de cepas específicas que sobreviven a la limpieza y la desinfección. Entre los mecanismos que facilitan la supervivencia de L. monocytogenes en el ambiente de las plantas de procesado de alimentos se incluyen la formación de biofilm, la adquisición de resistencia a antimicrobianos y la resistencia al estrés. El objetivo inicial de esta tesis fue analizar los diferentes subtipos de L. monocytogenes que se encontraban contaminando el ambiente y los productos de una planta de sacrificio y elaboración de productos de cerdo ibérico (Planta A) durante un periodo de tres años, con el fin de identificar las rutas de contaminación y posibles patrones de persistencia. Mediante electroforesis en gel en campo pulsante (PFGE) se identificaron 29 pulsotipos diferentes, ocho de los cuales se consideraron persistentes. La distribución en el ambiente y en los productos de tres pulsotipos predominantes generó patrones de contaminación específicos de cada uno de ellos, que mostraron respuestas diferentes ante las medidas correctoras que se adoptaron en la planta. Estos resultados destacan la importancia de la caracterización molecular de los subtipos de L. monocytogenes para identificar las rutas de contaminación específicas de la planta, que permitieron mejorar las estrategias de control de la contaminación...
Resumo:
Infections caused by community-acquired (CA)-methicillin-resistant Staphylococcus aureus (MRSA) have been reported worldwide. We assessed whether any common genetic markers existed among 117 CA-MRSA isolates from the United States, France, Switzerland, Australia, New Zealand, and Western Samoa by performing polymerase chain reaction for 24 virulence factors and the methicillin-resistance determinant. The genetic background of the strain was analyzed by pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). The CA-MRSA strains shared a type IV SCCmec cassette and the Panton-Valentine leukocidin locus, whereas the distribution of the other toxin genes was quite specific to the strains from each continent. PFGE and MLST analysis indicated distinct genetic backgrounds associated with each geographic origin, although predominantly restricted to the agr3 background. Within each continent, the genetic background of CA-MRSA strains did not correspond to that of the hospital-acquired MRSA.
Resumo:
In this study, the suitability of two repetitive-element-based PCR (rep-PCR) assays, enterobacterial repetitive intergenic consensus (ERIC)-PCR and BOX-PCR, to rapidly characterize Pseudomonas aeruginosa strains isolated from patients with cystic fibrosis (CF) was examined. ERIC-PCR utilizes paired sequence-specific primers and BOX-PCR a single primer that target highly conserved repetitive elements in the P. aeruginosa genome. Using these rep-PCR assays, 163 P. aeruginosa isolates cultured from sputa collected from 50 patients attending an adult CF clinic and 50 children attending a paediatric CF clinic were typed. The results of the rep-PCR assays were compared to the results of PFGE. All three assays revealed the presence of six major clonal groups shared by multiple patients attending either of the CF clinics, with the dominant clonal group infecting 38% of all patients. This dominant clonal group was not related to the dominant clonal group detected in Sydney or Melbourne (pulsotype 1), nor was it related to the dominant groups detected in the UK. In all, PFGE and rep-PCR identified 58 distinct clonal groups, with only three of these shared between the two clinics. The results of this study showed that both ERIC-PCR and BOX-PCR are rapid, highly discriminatory and reproducible assays that proved to be powerful surveillance screening tools for the typing of clinical P. aeruginosa isolates recovered from patients with CF.
Resumo:
Increasing reports of the appearance of novel nonmultiresistant methicillin-resistant Staphylococcus aureus MRSA (MRSA) strains in the community and of the spread of hospital MRSA strains into the community are cause for public health concern. We conducted two national surveys of unique isolates of S. aureus from clinical specimens collected from nonhospitalized patients commencing in 2000 and 2002, respectively. A total of 11.7% of 2,498 isolates from 2000 and 15.4% of 2,486 isolates from 2002 were MRSA. Approximately 54% of the MRSA isolates were nonmultiresistant (resistant to less than three of nine antibiotics) in both surveys. The majority of multiresistant MRSA isolates in both surveys belonged to two strains (strains AUS-2 and AUS-3), as determined by pulsed-field gel electrophoresis (PFGE) and resistogram typing. The 3 AUS-2 isolates and 10 of the 11 AUS-3 isolates selected for multilocus sequence typing (MLST) and staphylococcal chromosomal cassette mec (SCCmec) analysis were ST239-MRSA-III (where ST is the sequence type) and thus belonged to the same clone as the eastern Australian MRSA strain of the 1980s, which spread internationally. Four predominant clones of novel nonmultiresistant MRSA were identified by PFGE, MLST, and SCCmec analysis: ST22-MRSA-IV (strain EMRSA-15), ST1-MRSA-IV (strain WA-1), ST30-MRSA-IV (strain SWP), and ST93-MRSA-IV (strain Queensland). The last three clones are associated with community acquisition. A total of 14 STs were identified in the surveys, including six unique clones of novel nonmultiresistant MRSA, namely, STs 73, 93, 129, 75, and 80sIv and a new ST. SCCmec types IV and V were present in diverse genetic backgrounds. These findings provide support for the acquisition of SCCmec by multiple lineages of S. aureus. They also confirm that both hospital and community strains of MRSA are now common in nonhospitalized patients throughout Australia.
Resumo:
Objectives: To determine clonality and identify plasmid-mediated resistance genes in 11 multidrug-resistant Escherichia coli (MDREC) isolates associated with opportunistic infections in hospitalized dogs in Australia. Methods: Phenotypic (MIC determinations, modified double-disc diffusion and isoelectric focusing) and genotypic methods (PFGE, plasmid analysis, PCR, sequencing, Southern hybridization, bacterial conjugation and transformation) were used to characterize, investigate the genetic relatedness of, and identify selected plasmid-mediated antimicrobial resistance genes, in the canine MDREC. Results: Canine MDRECs were divided into two clonal groups (CG 1 and 2) with distinct restriction endonuclease digestion and plasmid profiles. All isolates possessed bla(CMY-7) on an similar to 93 kb plasmid. In CG 1 isolates, bla(TEM), catA1 and class 1 integron-associated dfrA17-aadA5 genes were located on an similar to 170 kb plasmid. In CG 2 isolates, a second similar to 93 kb plasmid contained bla(TEM) and unidentified class 1 integron genes, although a single CG 2 strain carried dfrA5. Antimicrobial susceptibility profiling of E. coli K12 transformed with CG 2 large plasmids confirmed that the bla(CMY-7)-carrying plasmid did not carry any other antimicrobial resistance genes, whereas the bla(TEM)/class 1 integron-carrying plasmid carried genes conferring resistance to tetracycline and streptomycin also. Conclusions: This is the first report on the detection of plasmid-mediated bla(CMY-7) in animal isolates in Australia. MDREC isolated from extraintestinal infections in dogs may be an important reservoir of plasmid-mediated resistance genes.
Resumo:
Microbiological diagnosis of catheter-related bloodstream infection (CR-BSI) is often based on isolation of indistinguishable micro-organisms from an explanted catheter tip and blood culture, confirmed by antibiograms. Whether phenotypic identification of coagulase-negative staphylococci (CoNS) allows an accurate diagnosis of CR-BSI to be established was evaluated. Eight patients with a diagnosis of CR-BSI had CoNS isolated from pure blood cultures and explanted catheter tips which were considered as indistinguishable strains by routine microbiological methods. For each patient, an additional three colonies of CoNS isolated from the blood and five from the catheter tip were subcultured and further characterized by antibiogram profiles, analytical profile index (API) biotyping and PFGE. PFGE distinguished more strains of CoNS compared to API biotyping or antibiograms (17, 10 and 11, respectively). By PFGE, indistinguishable micro-organisms were only isolated from pure blood and catheter tip cultures in four out of eight (50%) patients thus supporting the diagnosis of CR-BSI. In another patient, indistinguishable micro-organisms were identified in both cultures; however, other strains of CoNS were also present. The remaining three patients had multiple strains of CoNS, none of which were indistinguishable in the tip and blood cultures, thus questioning the diagnosis of CR-BSI. Phenotypic characterization of CoNS lacked discriminatory power. Current routine methods of characterizing a limited number of pooled colonies may generate misleading results as multiple strains may be present in the cultures. Multiple colonies should be studied using a rapid genotypic characterization method to confirm or refute the diagnosis of CR-BSI. © 2007 SGM.