968 resultados para P-Zn interaction
Resumo:
Interaction of methanol, ethanol, and 2-propanol with polycrystalline as well as (0001) surfaces of Zn has been investigated by photoelectron spectroscopy and vibrational energy loss spectroscopy. All the alcohols show evidence for the condensed species along with the chemisorbed species at 80 K. With increase in temperature to similar to 120 K, the condensed species desorbs, leaving the chemisorbed species which decomposes to give the alkoxy species. The alkoxy species is produced increasingly at lower temperatures as we go from methanol to 2-propanol, the 2-propoxy species occurring even at 80 K. The alkoxy species undergo C-O bond scission giving rise to a hydrocarbon species and oxygen. The C-O bond cleavage occurs at a relatively low temperature of similar to 150 K. The effect of preadsorbed oxygen is to stabilize the methoxy species and prevent C-O bond scission. On the other hand, coadsorption of oxygen with methanol favors the formation of the methoxy species and gives rise to hydrocarbon species arising from the C-O bond scission even at 80 K.
Resumo:
In recent years there has been considerable interest in developing new types of gelators of organic solvents.1 Despite the recent advances, a priori design of a gelator for gelling a given solvent has remained a challenging task. Various noncovalent interactions like hydrogen-bonding,2 metal coordination3 etc. have been used as the driving force for the gelation process. A special class of cholesterol-based gelators were reported by Weiss,4 and by Shinkai.5 Gels derived from these molecules have been used for chiral recognition/sensing,6 for studying photo- and metal-responsive functions,7 and as templates to make hollow fiber silica.8 Other types of organogels have been used for designing polymerized 9 and reverse aerogels,10 and in molecular imprinting.11 Hanabusa’s group has recently reported organogels with a bile acid derivative.12 This has prompted us to disclose our results on a novel electron donor–acceptor (EDA) interaction mediated two-component13 gelator system based on the bile acid14 backbone.
Resumo:
The nicotinic Acetylcholine Receptor (nAChR) is the major class of neurotransmitter receptors that is involved in many neurodegenerative conditions such as schizophrenia, Alzheimer's and Parkinson's diseases. The N-terminal region or Ligand Binding Domain (LBD) of nAChR is located at pre- and post-synaptic nervous system, which mediates synaptic transmission. nAChR acts as the drug target for agonist and competitive antagonist molecules that modulate signal transmission at the nerve terminals. Based on Acetylcholine Binding Protein (AChBP) from Lymnea stagnalis as the structural template, the homology modeling approach was carried out to build three dimensional model of the N-terminal region of human alpha(7)nAChR. This theoretical model is an assembly of five alpha(7) subunits with 5 fold axis symmetry, constituting a channel, with the binding picket present at the interface region of the subunits. alpha-netlrotoxin is a potent nAChR competitive antagonist that readily blocks the channel resulting in paralysis. The molecular interaction of alpha-Bungarotoxin, a long chain alpha-neurotoxin from (Bungarus multicinctus) and human alpha(7)nAChR seas studied. Agonists such as acetylcholine, nicotine, which are used in it diverse array of biological activities, such as enhancements of cognitive performances, were also docked with the theoretical model of human alpha(7)nAChR. These docked complexes were analyzed further for identifying the crucial residues involved i interaction. These results provide the details of interaction of agonists and competitive antagonists with three dimensional model of the N-terminal region of human alpha(7)nAChR and thereby point to the design of novel lead compounds.
Resumo:
Spectroscopic study on the interactions of trace elements Co, Mn, Mg and Al with d(GCGTACGC) indicated the following: Al and Mg did not alter T-m values. Mn enhanced T-m at lower concentration and decreased it at higher concentrations. Interestingly Co at higher concentration elevated the T-m. These studies also showed lower concentrations of Mn displaced EtBr, whereas Al could displace it at higher ionic strength. Mg and Co displaced EtBr fluorescence at moderate concentrations. The binding constant values and CD spectra clearly indicated strong binding of these elements to DNA.
Resumo:
Background and Purpose Acute cerebral ischemic events are associated with rupture of vulnerable carotid atheroma and subsequent thrombosis. Factors such as luminal stenosis and fibrous cap thickness have been thought to be important risk factors for plaque rupture. We used a flow-structure interaction model to simulate the interaction between blood flow and atheromatous plaque to evaluate the effect of the degree of luminal stenosis and fibrous cap thickness on plaque vulnerability. Methods A coupled nonlinear time-dependent model with a flow-plaque interaction simulation was used to perform flow and stress/strain analysis in a stenotic carotid artery model. The stress distribution within the plaque and the flow conditions within the vessel were calculated for every case when varying the fibrous cap thickness from 0.1 to 2 mm and the degree of luminal stenosis from 10% to 95%. A rupture stress of 300 kPa was chosen to indicate a high risk of plaque rupture. A 1-sample t test was used to compare plaque stresses with the rupture stress. Results High stress concentrations were found in the plaques in arteries with >70% degree of stenosis. Plaque stresses in arteries with 30% to 70% stenosis increased exponentially as fibrous cap thickness decreased. A decrease of fibrous cap thickness from 0.4 to 0.2 mm resulted in an increase of plaque stress from 141 to 409 kPa in a 40% degree stenotic artery. Conclusions There is an increase in plaque stress in arteries with a thin fibrous cap. The presence of a moderate carotid stenosis (30% to 70%) with a thin fibrous cap indicates a high risk for plaque rupture. Patients in the future may be risk stratified by measuring both fibrous cap thickness and luminal stenosis.
Resumo:
The bentiromide test was evaluated using plasma p-aminobenzoic acid as an indirect test of pancreatic insufficiency in young children between 2 months and 4 years of age. To determine the optimal test method, the following were examined: (a) the best dose of bentiromide (15 mg/kg or 30 mg/kg); (b) the optimal sampling time for plasma p-aminobenzoic acid, and; (c) the effect of coadministration of a liquid meal. Sixty-nine children (1.6 ± 1.0 years) were studied, including 34 controls with normal fat absorption and 35 patients (34 with cystic fibrosis) with fat maldigestion due to pancreatic insufficiency. Control and pancreatic insufficient subjects were studied in three age-matched groups: (a) low-dose bentiromide (15 mg/kg) with clear fluids; (b) high-dose bentiromide (30 mg/kg) with clear fluids, and; (c) high-dose bentiromide with a liquid meal. Plasma p-aminobenzoic acid was determined at 0, 30, 60, and 90 minutes then hourly for 6 hours. The dose effect of bentiromide with clear liquids was evaluated. High-dose bentiromide best discriminated control and pancreatic insufficient subjects, due to a higher peak plasma p-aminobenzoic acid level in controls, but poor sensitivity and specificity remained. High-dose bentiromide with a liquid meal produced a delayed increase in plasma p-aminobenzoic acid in the control subjects probably caused by retarded gastric emptying. However, in the pancreatic insufficient subjects, use of a liquid meal resulted in significantly lower plasma p-aminobenzoic acid levels at all time points; plasma p-aminobenzoic acid at 2 and 3 hours completely discriminated between control and pancreatic insufficient patients. Evaluation of the data by area under the time-concentration curve failed to improve test results. In conclusion, the bentiromide test is a simple, clinically useful means of detecting pancreatic insufficiency in young children, but a higher dose administered with a liquid meal is recommended.
Resumo:
The formation of axially coordinated morpholine (morph) complexes of MTPP, (M = Co, Ni, Cu and Zn) has been studied. Morpholine coordinates through imino nitrogen to the metal ions with the retainment of equatorial conformation. The presence of spin-free, NiTPP (morph), (S = 1) and an equilibrium mixture of CoTPP and an oxygen adduct of CoTPP (morph) in solution have been observed.
Resumo:
Serum gamma-glutamyl transferase (GGT) activity is a marker of liver disease which is also prospectively associated with the risk of all-cause mortality, cardiovascular disease, type 2 diabetes and cancers. We have discovered novel loci affecting GGT in a genome-wide association study (rs1497406 in an intergenic region of chromosome 1, P = 3.9 x 10(-8); rs944002 in C14orf73 on chromosome 14, P = 4.7 x 10(-13); rs340005 in RORA on chromosome 15, P = 2.4 x 10(-8)), and a highly significant heterogeneity between adult and adolescent results at the GGT1 locus on chromosome 22 (maximum P(HET) = 5.6 x 10(-12) at rs6519520). Pathway analysis of significant and suggestive single-nucleotide polymorphism associations showed significant overlap between genes affecting GGT and those affecting common metabolic and inflammatory diseases, and identified the hepatic nuclear factor (HNF) family as controllers of a network of genes affecting GGT. Our results reinforce the disease associations of GGT and demonstrate that control by the GGT1 locus varies with age.
Resumo:
The reaction of hexachlorocyclotriphosphazene (N3P3Cl6) with sodium p-cresoxide proceeds by a predominantly nongeminal pathway. The presence of geminal isomers at the bis- and tris-stages of substitution in tiny quantities (< 5%) has also been observed. All the chloro(p-cresoxy)cyclotriphosphazenes and their dimethylamino derivatives have been characterized by 1H-, 13C{1H}-, and 31P{1H}-NMR spectroscopy. The reaction of N3P3Cl6 with sodium phenoxide has been reinvestigated. The relative yields of the products at various stages of substitution and their isomeric compositions are almost the same for both phenoxy and p-cresoxy systems. Possible mechanisms to explain the observed isomeric compositions are discussed. A through-space interaction involving oxygen-2p and phosphorus-3d orbitals is invoked to explain the greater yield of the cis isomer of N3P3Cl4(OAr)2 than that of its trans isomer.
Resumo:
OBJECTIVE: To further investigate a common variant (rs9939609) in the fat mass- and obesity-associated gene (FTO), which recent genome-wide association studies have shown to be associated with body mass index (BMI) and obesity. DESIGN: We examined the effect of this FTO variant on BMI in 3353 Australian adult male and female twins. RESULTS: The minor A allele of rs9939609 was associated with an increased BMI (P=0.0007). Each additional copy of the A allele was associated with a mean BMI increase of approximately 1.04 kg/m(2) (approximately 3.71 kg). Using variance components decomposition, we estimate that this single-nucleotide polymorphism accounts for approximately 3% of the genetic variance in BMI in our sample (approximately 2% of the total variance). By comparing intrapair variances of monozygotic twins of different genotypes we were able to perform a direct test of gene by environment (G x E) interaction in both sexes and gene by parity (G x P) interaction in women, but no evidence was found for either. CONCLUSIONS: In addition to supporting earlier findings that the rs9939609 variant in the FTO gene is associated with an increased BMI, our results indicate that the associated genetic effect does not interact with environment or parity.
Resumo:
Plasmonics is a recently emerged technology that enables the compression of electromagnetic waves into miniscule metallic structures, thus enabling the focusing and routing of light on the nanoscale. Plasmonic waveguides can be used to miniaturise the size of integrated chip circuits while increasing the data transmission speed. Plasmonic waveguides are used to route the plasmons around a circuit and are a major focus of this thesis. Also, plasmons are highly sensitive to the surrounding dielectric environment. Using this property we have experimentally realised a refractive index sensor to detect refractive index change in solutions.
Resumo:
Significant interactions have been demonstrated between production factors and postharvest quality of fresh fruit. Accordingly, there is an attendant need for adaptive postharvest actions to modulate preharvest effects. The most significant preharvest effects appear to be mediated through mineral nutrition influences on the physical characteristics of fruit. Examples of specific influencers include fertilisers, water availability, rootstock, and crop load effects on fruit quality attributes such as skin colour, susceptibility to diseases and physiological disorders, and fruit nutritional composition. Also, rainfall before and during harvest can markedly affect fruit susceptibility to skin blemishes, physical damage, and diseases. Knowledge of preharvest-postharvest interactions can help determine the basis for variability in postharvest performance and thereby allow refinement of postharvest practices to minimise quality loss after harvest. This knowledge can be utilised in predictive management systems. Such systems can benefit from characterisation of fruit nutritional status, particularly minerals, several months before and/or at harvest to allow informed decisions on postharvest handling and marketing options. Other examples of proactive management practices include adjusting harvesting and packing systems to account for rainfall effects before and/or during harvest. Improved understanding of preharvest-postharvest interactions is contributing to the delivery of consistently higher quality of fruit to consumers. This paper focuses on the state of knowledge for sub-tropical and tropical fruits, in particular avocado and mango.
Resumo:
Significant interactions have been demonstrated between production factors and postharvest quality of fresh fruit. Accordingly, there is an attendant need for adaptive postharvest actions to modulate preharvest effects. The most significant preharvest effects appear to be mediated through mineral nutrition influences on the physical characteristics of fruit. Examples of specific influencers include fertilisers, water availability, rootstock, and crop load effects on fruit quality attributes such as skin colour, susceptibility to diseases and physiological disorders, and fruit nutritional composition. Also, rainfall before and during harvest can markedly affect fruit susceptibility to skin blemishes, physical damage, and diseases. Knowledge of preharvest-postharvest interactions can help determine the basis for variability in postharvest performance and thereby allow refinement of postharvest practices to minimise quality loss after harvest. This knowledge can be utilised in predictive management systems. Such systems can benefit from characterisation of fruit nutritional status, particularly minerals, several months before and/or at harvest to allow informed decisions on postharvest handling and marketing options. Other examples of proactive management practices include adjusting harvesting and packing systems to account for rainfall effects before and/or during harvest. Improved understanding of preharvest-postharvest interactions is contributing to the delivery of consistently higher quality of fruit to consumers. This paper focuses on the state of knowledge for sub-tropical and tropical fruits, in particular avocado and mango.
Resumo:
Summary We have determined the full-length 14,491-nucleotide genome sequence of a new plant rhabdovirus, alfalfa dwarf virus (ADV). Seven open reading frames (ORFs) were identified in the antigenomic orientation of the negative-sense, single-stranded viral RNA, in the order 3′-N-P-P3-M-G-P6-L-5′. The ORFs are separated by conserved intergenic regions and the genome coding region is flanked by complementary 3′ leader and 5′ trailer sequences. Phylogenetic analysis of the nucleoprotein amino acid sequence indicated that this alfalfa-infecting rhabdovirus is related to viruses in the genus Cytorhabdovirus. When transiently expressed as GFP fusions in Nicotiana benthamiana leaves, most ADV proteins accumulated in the cell periphery, but unexpectedly P protein was localized exclusively in the nucleus. ADV P protein was shown to have a homotypic, and heterotypic nuclear interactions with N, P3 and M proteins by bimolecular fluorescence complementation. ADV appears unique in that it combines properties of both cytoplasmic and nuclear plant rhabdoviruses.
Resumo:
Fresh meat baits containing sodium fluoroacetate (1080) are widely used for controlling feral pigs in Queensland, but there is a potential poisoning risk to non-target species. This study investigated the non-target species interactions with meat bait by comparing the time until first approach, investigation, sample and consumption, and whether dying bait green would reduce interactions. A trial assessing species interactions with undyed bait was completed at Culgoa Floodplain National Park, Queensland. Meat baits were monitored for 79 consecutive days with camera traps. Of 40 baits, 100% were approached, 35% investigated (moved) and 25% sampled, and 25% consumed. Monitors approached (P < 0.05) and investigated (P < 0.05) the bait more rapidly than pigs or birds, but the median time until first sampling was not significantly different (P > 0.05), and did not consume any entire bait. A trial was conducted at Whetstone State Forest, southern Queensland, with green-dyed and undyed baits monitored for eight consecutive days with cameras. Of 60 baits, 92% were approached and also investigated by one or more non-target species. Most (85%) were sampled and 57% were consumed, with monitors having slightly more interaction with undyed baits than with green-dyed baits. Mean time until first approach and sample differed significantly between species groups (P = 0.038 and 0.007 respectively) with birds approaching sooner (P < 0.05) and monitors sampling later (P < 0.05) than other (unknown) species (P > 0.05). Undyed bait was sampled earlier (mean 2.19 days) than green-dyed bait (2.7 days) (P = 0.003). Data from the two trials demonstrate that many non-target species regularly visit and sample baits. The use of green-dyed baits may help reduce non-target uptake, but testing is required to determine the effect on attractiveness to feral pigs. Further research is recommended to quantify the benefits of potential strategies to reduce the non-target uptake of meat baits to help improve the availability of bait to feral pigs.