951 resultados para Over-voltage problem
Resumo:
In this action research study of two classrooms of 7th grade mathematics, I investigated how requiring written explanations of problem solving would affect students ability to problem solve, their ability to write good explanations, and how it would affect their attitudes toward mathematics and problem solving. I studied a regular 7th grade mathematics class and a lower ability 7th grade class to see if there would be any difference in what was gained by each group or any group. I discovered that there were no large gains made in the short time period of my action research. Some gains were made in ability to problem solve by my lower ability students over the 7 weeks that they did a weekly problem solving assignment. Some individual students felt that the writing had helped them in their problem solving because they needed to think and write each step. As a result of this research I plan to continue implementing writing in my classroom over the entire school year requiring a little more from students each time we problem solve and write.
Resumo:
This action research paper was about a mandatory math club of seventh graders that met once per week over a 12-week period. The students gathered in the classroom during their regularly scheduled math class. The focus of the math club was to solve challenging math problems, usually cooperatively, and sometimes competitively. The math club activities varied from week to week to offer an element of surprise. Frequently, the students presented their solutions to peers, along with an explanation of the way they solved the problem. Instruments were used to collect information about problem-solving accuracy, student attitudes, and student and teacher behaviors. I discovered a slight improvement in problem solving. Also, on Math Club days, the teaching was less teacher-centered and more student-centered. As a result of this research, I plan to offer my middle school students more problem-solving opportunities and I plan to allow my students to work cooperatively on a regular basis.
Resumo:
Purpose - The purpose of this paper is to develop an efficient numerical algorithm for the self-consistent solution of Schrodinger and Poisson equations in one-dimensional systems. The goal is to compute the charge-control and capacitance-voltage characteristics of quantum wire transistors. Design/methodology/approach - The paper presents a numerical formulation employing a non-uniform finite difference discretization scheme, in which the wavefunctions and electronic energy levels are obtained by solving the Schrodinger equation through the split-operator method while a relaxation method in the FTCS scheme ("Forward Time Centered Space") is used to solve the two-dimensional Poisson equation. Findings - The numerical model is validated by taking previously published results as a benchmark and then applying them to yield the charge-control characteristics and the capacitance-voltage relationship for a split-gate quantum wire device. Originality/value - The paper helps to fulfill the need for C-V models of quantum wire device. To do so, the authors implemented a straightforward calculation method for the two-dimensional electronic carrier density n(x,y). The formulation reduces the computational procedure to a much simpler problem, similar to the one-dimensional quantization case, significantly diminishing running time.
Resumo:
Salmonellosis is a major health problem worldwide. Serovar Enteritidis has been a primary cause of Salmonella outbreaks in many countries. In Brazil, few molecular typing studies have been performed. The aims of this study were to molecularly type Salmonella Enteritidis strains isolated in Brazil in order to determine the genetic relationship between strains of food and human origin, as well as, to assess their pathogenic potential and antimicrobial resistance. A total of 128 S. Enteritidis strains isolated from human feces (67) and food (61) between 1986 and 2010 were studied. The genotypic diversity was assessed by ERIC-PCR and PFGE using Xbal, the antimicrobial resistance by the disc-diffusion assay and the presence of the SPI-1, SPI-2 and pSTV virulence genes assessed by PCR. The ERIC-PCR results revealed that 112 strains exhibited a similarity of >85.4% and the PFGE that 96 strains exhibited a similarity of >80.0%. Almost all strains (97.6%) harbored all 13 virulence genes investigated. Thirty-six strains (28.12%) were resistant to nalidixic acid. In conclusion, the nalidixic acid resistance observed after 1996 is indicative of an increase in the use of this drug. It may be suggested that these 128 strains might have descended from a common ancestor that differed little over 24 years and has been both contaminating food and humans and causing disease for more than two decades in Brazil. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The design and implementation of a new control scheme for reactive power compensation, voltage regulation and transient stability enhancement for wind turbines equipped with fixed-speed induction generators (IGs) in large interconnected power systems is presented in this study. The low-voltage-ride-through (LVRT) capability is provided by extending the range of the operation of the controlled system to include typical post-fault conditions. A systematic procedure is proposed to design decentralised multi-variable controllers for large interconnected power systems using the linear quadratic (LQ) output-feedback control design method and the controller design procedure is formulated as an optimisation problem involving rank-constrained linear matrix inequality (LMI). In this study, it is shown that a static synchronous compensator (STATCOM) with energy storage system (ESS), controlled via robust control technique, is an effective device for improving the LVRT capability of fixed-speed wind turbines.
Resumo:
The aim of solving the Optimal Power Flow problem is to determine the optimal state of an electric power transmission system, that is, the voltage magnitude and phase angles and the tap ratios of the transformers that optimize the performance of a given system, while satisfying its physical and operating constraints. The Optimal Power Flow problem is modeled as a large-scale mixed-discrete nonlinear programming problem. This paper proposes a method for handling the discrete variables of the Optimal Power Flow problem. A penalty function is presented. Due to the inclusion of the penalty function into the objective function, a sequence of nonlinear programming problems with only continuous variables is obtained and the solutions of these problems converge to a solution of the mixed problem. The obtained nonlinear programming problems are solved by a Primal-Dual Logarithmic-Barrier Method. Numerical tests using the IEEE 14, 30, 118 and 300-Bus test systems indicate that the method is efficient. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Over the past few years, the field of global optimization has been very active, producing different kinds of deterministic and stochastic algorithms for optimization in the continuous domain. These days, the use of evolutionary algorithms (EAs) to solve optimization problems is a common practice due to their competitive performance on complex search spaces. EAs are well known for their ability to deal with nonlinear and complex optimization problems. Differential evolution (DE) algorithms are a family of evolutionary optimization techniques that use a rather greedy and less stochastic approach to problem solving, when compared to classical evolutionary algorithms. The main idea is to construct, at each generation, for each element of the population a mutant vector, which is constructed through a specific mutation operation based on adding differences between randomly selected elements of the population to another element. Due to its simple implementation, minimum mathematical processing and good optimization capability, DE has attracted attention. This paper proposes a new approach to solve electromagnetic design problems that combines the DE algorithm with a generator of chaos sequences. This approach is tested on the design of a loudspeaker model with 17 degrees of freedom, for showing its applicability to electromagnetic problems. The results show that the DE algorithm with chaotic sequences presents better, or at least similar, results when compared to the standard DE algorithm and other evolutionary algorithms available in the literature.
Resumo:
The research activity carried out during the PhD course in Electrical Engineering belongs to the branch of electric and electronic measurements. The main subject of the present thesis is a distributed measurement system to be installed in Medium Voltage power networks, as well as the method developed to analyze data acquired by the measurement system itself and to monitor power quality. In chapter 2 the increasing interest towards power quality in electrical systems is illustrated, by reporting the international research activity inherent to the problem and the relevant standards and guidelines emitted. The aspect of the quality of voltage provided by utilities and influenced by customers in the various points of a network came out only in recent years, in particular as a consequence of the energy market liberalization. Usually, the concept of quality of the delivered energy has been associated mostly to its continuity. Hence the reliability was the main characteristic to be ensured for power systems. Nowadays, the number and duration of interruptions are the “quality indicators” commonly perceived by most customers; for this reason, a short section is dedicated also to network reliability and its regulation. In this contest it should be noted that although the measurement system developed during the research activity belongs to the field of power quality evaluation systems, the information registered in real time by its remote stations can be used to improve the system reliability too. Given the vast scenario of power quality degrading phenomena that usually can occur in distribution networks, the study has been focused on electromagnetic transients affecting line voltages. The outcome of such a study has been the design and realization of a distributed measurement system which continuously monitor the phase signals in different points of a network, detect the occurrence of transients superposed to the fundamental steady state component and register the time of occurrence of such events. The data set is finally used to locate the source of the transient disturbance propagating along the network lines. Most of the oscillatory transients affecting line voltages are due to faults occurring in any point of the distribution system and have to be seen before protection equipment intervention. An important conclusion is that the method can improve the monitored network reliability, since the knowledge of the location of a fault allows the energy manager to reduce as much as possible both the area of the network to be disconnected for protection purposes and the time spent by technical staff to recover the abnormal condition and/or the damage. The part of the thesis presenting the results of such a study and activity is structured as follows: chapter 3 deals with the propagation of electromagnetic transients in power systems by defining characteristics and causes of the phenomena and briefly reporting the theory and approaches used to study transients propagation. Then the state of the art concerning methods to detect and locate faults in distribution networks is presented. Finally the attention is paid on the particular technique adopted for the same purpose during the thesis, and the methods developed on the basis of such approach. Chapter 4 reports the configuration of the distribution networks on which the fault location method has been applied by means of simulations as well as the results obtained case by case. In this way the performance featured by the location procedure firstly in ideal then in realistic operating conditions are tested. In chapter 5 the measurement system designed to implement the transients detection and fault location method is presented. The hardware belonging to the measurement chain of every acquisition channel in remote stations is described. Then, the global measurement system is characterized by considering the non ideal aspects of each device that can concur to the final combined uncertainty on the estimated position of the fault in the network under test. Finally, such parameter is computed according to the Guide to the Expression of Uncertainty in Measurements, by means of a numeric procedure. In the last chapter a device is described that has been designed and realized during the PhD activity aiming at substituting the commercial capacitive voltage divider belonging to the conditioning block of the measurement chain. Such a study has been carried out aiming at providing an alternative to the used transducer that could feature equivalent performance and lower cost. In this way, the economical impact of the investment associated to the whole measurement system would be significantly reduced, making the method application much more feasible.
Resumo:
This dissertation presents the theory and the conducted activity that lead to the construction of a high voltage high frequency arbitrary waveform voltage generator. The generator has been specifically designed to supply power to a wide range of plasma actuators. The system has been completely designed, manufactured and tested at the Department of Electrical, Electronic and Information Engineering of the University of Bologna. The generator structure is based on the single phase cascaded H-bridge multilevel topology and is comprised of 24 elementary units that are series connected in order to form the typical staircase output voltage waveform of a multilevel converter. The total number of voltage levels that can be produced by the generator is 49. Each level is 600 V making the output peak-to-peak voltage equal to 28.8 kV. The large number of levels provides high resolution with respect to the output voltage having thus the possibility to generate arbitrary waveforms. Maximum frequency of operation is 20 kHz. A study of the relevant literature shows that this is the first time that a cascaded multilevel converter of such dimensions has been constructed. Isolation and control challenges had to be solved for the realization of the system. The biggest problem of the current technology in power supplies for plasma actuators is load matching. Resonant converters are the most used power supplies and are seriously affected by this problem. The manufactured generator completely solves this issue providing consistent voltage output independently of the connected load. This fact is very important when executing tests and during the comparison of the results because all measures should be comparable and not dependent from matching issues. The use of the multilevel converter for power supplying a plasma actuator is a real technological breakthrough that has provided and will continue to provide very significant experimental results.
A clinical approach to arterial ischemic childhood stroke: increasing knowledge over the last decade
Resumo:
Childhood stroke is increasingly being recognized as an important burden not only for affected children and families, but also for socioeconomic reasons. A primary problem is delayed diagnosis, due to the many mimics of childhood stroke, and the variety of manifesting symptoms. The most important is hemiparesis (with/without dysphasia or facial palsy), but ataxia, seizures, and many more are also possible. Suspicion of stroke has to be ascertained by neuroimaging, gold standard being (diffusion weighted) magnetic resonance. Risk factors are multiple, but their presence might help to increase the suspicion of stroke. The most important factors are infectious/parainfectious etiologies, frequently possibly manifesting by transient focal cerebral arteriopathy (FCA). Cardiological underlying problems are the second most important. Arteriopathies can be detected in about half of the children, besides FCA and dissection and MoyaMoya disease are the most important. Hereditary coagulopathies increase the risk of stroke. There is still a controversy on best treatment in children: platelet antiaggregation and heparinization are used about equally. Thrombolysis is being discussed increasingly. Severity of symptoms at manifestation and on follow-up are not less significant in children than in young adults. About two-third of the children have significant residual neurological problems and a majority cognitive and behavior problems.
Resumo:
This project intertwines philosophical and historico-literary themes, taking as its starting point the concept of tragic consciousness inherent in the epoch of classicism. The research work makes use of ontological categories in order to describe the underlying principles of the image of the world which was created in philosophical and scientific theories of the 17th century as well as in contemporary drama. Using these categories brought Mr. Vilk to the conclusion that the classical picture of the world implied a certain dualism; not the Manichaean division between light and darkness but the discrimination between nature and absolute being, i.e. God. Mr. Vilk begins with an examination of the philosophical essence of French classical theatre of the XVII and XVIII centuries. The history of French classical tragedy can be divided into three periods: from the mid 17th to early 19th centuries when it triumphed all over France and exerted a powerful influence over almost all European countries; followed by the period of its rejection by the Romantics, who declared classicism to be "artificial and rational"; and finally our own century which has taken a more moderate line. Nevertheless, French classical tragedy has never fully recovered its status. Instead, it is ancient tragedy and the works of Shakespeare that are regarded to be the most adequate embodiment of the tragic. Consequently they still provoke a great number of new interpretations ranging from specialised literary criticism to more philosophical rumination. An important feature of classical tragedy is a system of rules and unities which reveals a hidden ontological structure of the world. The ontological picture of the dramatic world can be described in categories worked out by medieval philosophy - being, essence and existence. The first category is to be understood as a tendency toward permanency and stability (within eternity) connected with this or that fragment of dramatic reality. The second implies a certain set of permanent elements that make up the reality. And the third - existence - should be understood as "an act of being", as a realisation of permanently renewed processes of life. All of these categories can be found in every artistic reality but the accents put on one or another and their interrelations create different ontological perspectives. Mr. Vilk plots the movement of thought, expressed in both philosophical and scientific discourses, away from Aristotle's essential forms, and towards a prioritising of existence, and shows how new forms of literature and drama structured the world according to these evolving requirements. At the same time the world created in classical tragedy fully preserves another ontological paradigm - being - as a fundamental permanence. As far as the tragic hero's motivations are concerned this paradigm is revealed in the dedication of his whole self to some cause, and his oath of fidelity, attitudes which shape his behaviour. It may be the idea of the State, or personal honour, or something borrowed from the emotional sphere, passionate love. Mr. Vilk views the conflicting ambivalence of existence and being, duty as responsibility and duty as fidelity, as underlying the main conflict of classical tragedy of the 17th century. Having plotted the movement of the being/existence duality through its manifestations in 17th century tragedy, Mr. Vilk moves to the 18th century, when tragedy took a philosophical turn. A dualistic view of the world became supplanted by the Enlightenment idea of a natural law, rooted in nature. The main point of tragedy now was to reveal that such conflicts as might take place had an anti-rational nature, that they arose as the result of a kind of superstition caused by social reasons. These themes Mr. Vilk now pursues through Russian dramatists of the 18th and early 19th centuries. He begins with Sumarakov, whose philosophical thought has a religious bias. According to Sumarakov, the dualism of the divineness and naturalness of man is on the one hand an eternal paradox, and on the other, a moral challenge for humans to try to unite the two opposites. His early tragedies are not concerned with social evils or the triumph of natural feelings and human reason, but rather the tragic disharmony in the nature of man and the world. Mr Vilk turns next to the work of Kniazhnin. He is particularly keen to rescue his reputation from the judgements of critics who accuse him of being imitative, and in order to do so, analyses in detail the tragedy "Dido", in which Kniazhnin makes an attempt to revive the image of great heroes and city-founders. Aeneas represents the idea of the "being" of Troy, his destiny is the re-establishment of the city (the future Rome). The moral aspect behind this idea is faithfulness, he devotes himself to Gods. Dido is also the creator of a city, endowed with "natural powers" and abilities, but her creation is lacking internal stability grounded in "being". The unity of the two motives is only achieved through Dido's sacrifice of herself and her city to Aeneus. Mr Vilk's next subject is Kheraskov, whose peculiarity lies in the influence of free-mason mysticism on his work. This section deals with one of the most important philosophical assumptions contained in contemporary free-mason literature of the time - the idea of the trinitarian hierarchy inherent in man and the world: body - soul - spirit, and nature - law - grace. Finally, Mr. Vilk assess the work of Ozerov, the last major Russian tragedian. The tragedies which earned him fame, "Oedipus in Athens", "Fingal" and "Dmitri Donskoi", present a compromise between the Enlightenment's emphasis on harmony and ontological tragic conflict. But it is in "Polixene" that a real meeting of the Russian tradition with the age-old history of the genre takes place. The male and female characters of "Polixene" distinctly express the elements of "being" and "existence". Each of the participants of the conflict possesses some dominant characteristic personifying a certain indispensable part of the moral world, a certain "virtue". But their independent efforts are unable to overcome the ontological gap separating them. The end of the tragedy - Polixene's sacrificial self-immolation - paradoxically combines the glorification of each party involved in the conflict, and their condemnation. The final part of Mr. Vilk's research deals with the influence of "Polixene" upon subsequent dramatic art. In this respect Katenin's "Andromacha", inspired by "Polixene", is important to mention. In "Andromacha" a decisive divergence from the principles of the philosophical tragedy of Russian classicism and the ontology of classicism occurs: a new character appears as an independent personality, directed by his private interest. It was Katenin who was to become the intermediary between Pushkin and classical tragedy.
Resumo:
Acetabular retroversion has been proposed to contribute to the development of osteoarthritis of the hip. For the diagnosis of this condition, conventional AP pelvic radiographs may represent a reliable, easily available diagnostic modality as they can be obtained with a reproducible technique allowing the anterior and posterior acetabular rims to be visible for assessment. This study was designed to: (i) determine cranial, central, and caudal anatomic acetabular version (AV) from cadaveric specimens; (ii) establish the validity and reliability of the radiographic measurements of central acetabular anteversion; and (iii) determine the validity and reliability of the radiographic "cross-over-sign" to detect acetabular retroversion. Using 43 desiccated pelvises (86 acetabuli) the anatomic AVs were measured at three different transverse planes (cranially, centrally, and caudally). From these pelvises, standardized AP pelvic radiographs were obtained. To directly measure central AV, a modified radiographic method is introduced for the use of AP pelvic radiographs. The validity and reliability of this radiographic method and of the radiographic cross-over-sign to detect cranial acetabular retroversion were determined. The mean central and caudal anatomic AVs were approximately 20 degrees , and the mean cranial AV was 8 degrees . Cranial retroversion (AV < 0 degrees ) was present in 19 of 86 hips (22%). A linear correlation was found between the central and cranial AV. Below 10 degrees of central AV, all acetabuli were cranially retroverted. Between 10 degrees and 20 degrees , 30% of the acetabuli were cranially retroverted, and above 20 degrees , only 1 of 45 acetabuli was cranially retroverted. The radiographic measurement of the central AV (20.3 +/- 6.5 degrees ) correlated strongly with the anatomic AV (20.1 +/- 6.4 degrees ). The sensitivity of the cross-over-sign to detect a cranial acetabular anteversion of less than 4 degrees was 96%, its specificity 95%, and the positive predictive and negative predictive values 90% and 98%, respectively. Both the modified radiographic anteversion measurements and the cross-over-sign demonstrated substantial inter- and intraobserver reliability. Retroversion is almost exclusively a problem of the cranial acetabulum. The cranial AV is on average 12 degrees lower than the central AV, with the latter directly measurable from AP pelvic radiographs. A central AV of less than 10 degrees was associated with cranial retroversion. The presence of a positive cross-over-sign is a highly reliable indicator of cranial AV of <4 degrees.
Resumo:
The rising concerns about environmental pollution and global warming have facilitated research interest in hydrogen energy as an alternative energy source. To apply hydrogen for transportations, several issues have to be solved, within which hydrogen storage is the most critical problem. Lots of materials and devices have been developed; however, none is able to meet the DOE storage target. The primary issue for hydrogen physisorption is a weak interaction between hydrogen and the surface of solid materials, resulting negligible adsorption at room temperature. To solve this issue, there is a need to increase the interaction between the hydrogen molecules and adsorbent surface. In this study, intrinsic electric dipole is investigated to enhance the adsorption energy. The results from the computer simulation of single ionic compounds with hydrogen molecules to form hydrogen clusters showed that electrical charge of substances plays an important role in generation of attractive interaction with hydrogen molecules. In order to further examine the effects of static interaction on hydrogen adsorption, activated carbon with a large surface area was impregnated with various ionic salts including LiCl, NaCl, KCl, KBr, and NiCl and their performance for hydrogen storage was evaluated by using a volumetric method. Corresponding computer simulations have been carried out by using DFT (Density Functional Theory) method combined with point charge arrays. Both experimental and computational results prove that the adsorption capacity of hydrogen and its interaction with the solid materials increased with electrical dipole moment. Besides the intrinsic dipole, an externally applied electric field could be another means to enhance hydrogen adsorption. Hydrogen adsorption under an applied electric field was examined by using porous nickel foil as electrodes. Electrical signals showed that adsorption capacity increased with the increasing of gas pressure and external electric voltage. Direct measurement of the amount of hydrogen adsorption was also carried out with porous nickel oxides and magnesium oxides using the piezoelectric material PMN-PT as the charge supplier due to the pressure. The adsorption enhancement from the PMN-PT generated charges is obvious at hydrogen pressure between 0 and 60 bars, where the hydrogen uptake is increased at about 35% for nickel oxide and 25% for magnesium oxide. Computer simulation reveals that under the external electric field, the electron cloud of hydrogen molecules is pulled over to the adsorbent site and can overlap with the adsorbent electrons, which in turn enhances the adsorption energy Experiments were also carried out to examine the effects of hydrogen spillover with charge induced enhancement. The results show that the overall storage capacity in nickel oxide increased remarkably by a factor of 4.
Resumo:
Background Young children are known to be the most frequent hospital users compared to older children and young adults. Therefore, they are an important population from economic and policy perspectives of health care delivery. In Switzerland complete hospitalization discharge records for children [<5 years] of four consecutive years [2002–2005] were evaluated in order to analyze variation in patterns of hospital use. Methods Stationary and outpatient hospitalization rates on aggregated ZIP code level were calculated based on census data provided by the Swiss federal statistical office (BfS). Thirty-seven hospital service areas for children [HSAP] were created with the method of "small area analysis", reflecting user-based health markets. Descriptive statistics and general linear models were applied to analyze the data. Results The mean stationary hospitalization rate over four years was 66.1 discharges per 1000 children. Hospitalizations for respiratory problem are most dominant in young children (25.9%) and highest hospitalization rates are associated with geographical factors of urban areas and specific language regions. Statistical models yielded significant effect estimates for these factors and a significant association between ambulatory/outpatient and stationary hospitalization rates. Conclusion The utilization-based approach, using HSAP as spatial representation of user-based health markets, is a valid instrument and allows assessing the supply and demand of children's health care services. The study provides for the first time estimates for several factors associated with the large variation in the utilization and provision of paediatric health care resources in Switzerland.
Resumo:
Planning in realistic domains typically involves reasoning under uncertainty, operating under time and resource constraints, and finding the optimal subset of goals to work on. Creating optimal plans that consider all of these features is a computationally complex, challenging problem. This dissertation develops an AO* search based planner named CPOAO* (Concurrent, Probabilistic, Over-subscription AO*) which incorporates durative actions, time and resource constraints, concurrent execution, over-subscribed goals, and probabilistic actions. To handle concurrent actions, action combinations rather than individual actions are taken as plan steps. Plan optimization is explored by adding two novel aspects to plans. First, parallel steps that serve the same goal are used to increase the plan’s probability of success. Traditionally, only parallel steps that serve different goals are used to reduce plan execution time. Second, actions that are executing but are no longer useful can be terminated to save resources and time. Conventional planners assume that all actions that were started will be carried out to completion. To reduce the size of the search space, several domain independent heuristic functions and pruning techniques were developed. The key ideas are to exploit dominance relations for candidate action sets and to develop relaxed planning graphs to estimate the expected rewards of states. This thesis contributes (1) an AO* based planner to generate parallel plans, (2) domain independent heuristics to increase planner efficiency, and (3) the ability to execute redundant actions and to terminate useless actions to increase plan efficiency.