989 resultados para Ovarian Function
Resumo:
Persistent use of safety restraints prevents deaths and reduces the severity and number of injuries resulting from motor vehicle crashes. However, safety-restraint use rates in the United States have been below those of other nations with safety-restraint enforcement laws. With a better understanding of the relationship between safety-restraint law enforcement and safety-restraint use, programs can be implemented to decrease the number of deaths and injuries resulting from motor vehicle crashes. Does safety-restraint use increase as enforcement increases? Do motorists increase their safety-restraint use in response to the general presence of law enforcement or to targeted law enforcement efforts? Does a relationship between enforcement and restraint use exist at the countywide level? A logistic regression model was estimated by using county-level safety-restraint use data and traffic citation statistics collected in 13 counties within the state of Florida in 1997. The model results suggest that safety-restraint use is positively correlated with enforcement intensity, is negatively correlated with safety-restraint enforcement coverage (in lanemiles of enforcement coverage), and is greater in urban than rural areas. The quantification of these relationships may assist Florida and other law enforcement agencies in raising safety-restraint use rates by allocating limited funds more efficiently either by allocating additional time for enforcement activities of the existing force or by increasing enforcement staff. In addition, the research supports a commonsense notion that enforcement activities do result in behavioral response.
Resumo:
Tilted disc syndrome can cause visual field defects due to an optic disc anomaly. Recent electrophysiological findings demonstrate reduced central outer retinal function with ophthalmoscopically normal maculae. We measured macular sensitivity with the microperimeter and performed psychophysical assessment of mesopic rod and cone luminance temporal sensitivity (critical fusion frequency)in a 52-year-old male patient with tilted disc syndrome and ophthalmoscopically normal maculae. We found a marked reduction of sensitivity in the central 20 degrees and reduced rod- and cone-mediated mesopic visual function. Our findings extend previous electrophysiological data that suggest an outer retinal involvement of cone pathways and present a case with rod and cone impairment mediated via the magnocellular pathway in uncomplicated tilted disc syndrome.
Resumo:
This investigation describes the prevalence of upper-body symptoms in a population-based sample of women with breast cancer (BC) and examines their relationships with upper-body function (UBF) and lymphoedema, as two clinically important sequelae. Australian women (n=287) with unilateral BC were assessed at three-monthly intervals, from six to 18 months post-surgery (PS). Participants reported the presence and intensity of upper-body symptoms on the treated side. Objective and self-reported UBF and lymphoedema (bioimpedance spectroscopy) were also assessed. Approximately 50% of women reported at least one moderate-to-extreme symptom at 6- and at 18-months PS. There was a significant relationship between symptoms and function (p<0.01), whereby perceived and objective function declined with increasing number of symptoms present. Those with lymphoedema were more likely to report multiple symptoms and presence of symptoms at baseline increased risk of lymphoedema (ORs>1.3, p=0.02). Although, presence of symptoms explained only 5.5% of the variation in the odds of lymphoedema. Upper-body symptoms are common and persistent following breast cancer and are associated with clinical ramifications, including reduced UBF and increased risk of developing lymphoedema. However, using the presence of symptoms as a diagnostic indicator of lymphoedema is limited.
Resumo:
The behaviour of cells cultured within three-dimensional (3D) structures rather than onto two-dimensional (2D) culture plastic more closely reflects their in vivo responses. Consequently, 3D culture systems are becoming crucial scientific tools in cancer cell research. We used a novel 3D culture concept to assess cell-matrix interactions implicated in carcinogenesis: a synthetic hydrogel matrix equipped with key biomimetic features, namely incorporated cell integrin-binding motifs (e.g. RGD peptides) and the ability of being degraded by cell-secreted proteases (e.g. matrix metalloproteases). As a cell model, we chose epithelial ovarian cancer, an aggressive disease typically diagnosed at an advanced stage when chemoresistance occurs. Both cell lines used (OV-MZ-6, SKOV-3) proliferated similarly in 2D, but not in 3D. Spheroid formation was observed exclusively in 3D when cells were embedded within hydrogels. By exploiting the design flexibility of the hydrogel characteristics, we showed that proliferation in 3D was dependent on cell-integrin engagement and the ability of cells to proteolytically remodel their extracellular microenvironment. Higher survival rates after exposure to the anti-cancer drug paclitaxel were observed in cell spheroids grown in hydrogels (40-60%) compared to cell monolayers in 2D (20%). Thus, 2D evaluation of chemosensitivity may not reflect pathophysiological events seen in patients. Because of the design flexibility of their characteristics and their stability in long-term cultures (28 days), these biomimetic hydrogels represent alternative culture systems for the increasing demand in cancer research for more versatile, physiologically relevant and reproducible 3D matrices.
Resumo:
BLAST Atlas is a visual analysis system for comparative genomics that supports genome-wide gene characterisation, functional assignment and function-based browsing of one or more chromosomes. Inspired by applications such as the WorldWide Telescope, Bing Maps 3D and Google Earth, BLAST Atlas uses novel three-dimensional gene and function views that provide a highly interactive and intuitive way for scientists to navigate, query and compare gene annotations. The system can be used for gene identification and functional assignment or as a function-based multiple genome comparison tool which complements existing position based comparison and alignment viewers.
Resumo:
This paper presents a novel method for remaining useful life prediction using the Elliptical Basis Function (EBF) network and a Markov chain. The EBF structure is trained by a modified Expectation-Maximization (EM) algorithm in order to take into account the missing covariate set. No explicit extrapolation is needed for internal covariates while a Markov chain is constructed to represent the evolution of external covariates in the study. The estimated external and the unknown internal covariates constitute an incomplete covariate set which are then used and analyzed by the EBF network to provide survival information of the asset. It is shown in the case study that the method slightly underestimates the remaining useful life of an asset which is a desirable result for early maintenance decision and resource planning.
Resumo:
The human knee acts as a sophisticated shock absorber during landing movements. The ability of the knee to perform this function in the real world is remarkable given that the context of the landing movement may vary widely between performances. For this reason, humans must be capable of rapidly adjusting the mechanical properties of the knee under impact load in order to satisfy many competing demands. However, the processes involved in regulating these properties in response to changing constraints remain poorly understood. In particular, the effects of muscle fatigue on knee function during step landing are yet to be fully explored. Fatigue of the knee muscles is significant for 2 reasons. First, it is thought to have detrimental effects on the ability of the knee to act as a shock absorber and is considered a risk factor for knee injury. Second, fatigue of knee muscles provides a unique opportunity to examine the mechanisms by which healthy individuals alter knee function. A review of the literature revealed that the effect of fatigue on knee function during landing has been assessed by comparing pre and postfatigue measurements, with fatigue induced by a voluntary exercise protocol. The information is limited by inconsistent results with key measures, such as knee stiffness, showing varying results following fatigue, including increased stiffness, decreased stiffness or failure to detect any change in some experiments. Further consideration of the literature questions the validity of the models used to induce and measure fatigue, as well as the pre-post study design, which may explain the lack of consensus in the results. These limitations cast doubt on the usefulness of the available information and identify a need to investigate alternative approaches. Based on the results of this review, the aims of this thesis were to: • evaluate the methodological procedures used in validation of a fatigue model • investigate the adaptation and regulation of post-impact knee mechanics during repeated step landings • use this new information to test the effects of fatigue on knee function during a step-landing task. To address the aims of the thesis, 3 related experiments were conducted that collected kinetic, kinematic and electromyographic data from 3 separate samples of healthy male participants. The methodologies involved optoelectronic motion capture (VICON), isokinetic dynamometry (System3 Pro, BIODEX) and wireless surface electromyography (Zerowire, Aurion, Italy). Fatigue indicators and knee function measures used in each experiment were derived from the data. Study 1 compared the validity and reliability of repetitive stepping and isokinetic contractions with respect to fatigue of the quadriceps and hamstrings. Fifteen participants performed 50 repetitions of each exercise twice in randomised order, over 4 sessions. Sessions were separated by a minimum of 1 week’s rest, to ensure full recovery. Validity and reliability depended on a complex interaction between the exercise protocol, the fatigue indicator, the individual and the muscle of interest. Nevertheless, differences between exercise protocols indicated that stepping was less effective in eliciting valid and reliable changes in peak power and spectral compression, compared with isokinetic exercise. A key finding was that fatigue progressed in a biphasic pattern during both exercises. The point separating the 2 phases, known as the transition point, demonstrated superior between-test reliability during the isokinetic protocol, compared with stepping. However, a correction factor should be used to accurately apply this technique to the study of fatigue during landing. Study 2 examined alterations in knee function during repeated landings, with a different sample (N =12) performing 60 consecutive step landing trials. Each landing trial was separated by 1-minute rest periods. The results provided new information in relation to the pre-post study design in the context of detecting adjustments in knee function during landing. First, participants significantly increased or decreased pre-impact muscle activity or post-impact mechanics despite environmental and task constraints remaining unchanged. This is the 1st study to demonstrate this effect in healthy individuals without external feedback on performance. Second, single-subject analysis was more effective in detecting alterations in knee function compared to group-level analysis. Finally, repeated landing trials did not reduce inter-trial variability of knee function in some participants, contrary to assumptions underpinning previous studies. The results of studies 1 and 2 were used to modify the design of Study 3 relative to previous research. These alterations included a modified isokinetic fatigue protocol, multiple pre-fatigue measurements and singlesubject analysis to detect fatigue-related changes in knee function. The study design incorporated new analytical approaches to investigate fatiguerelated alterations in knee function during landing. Participants (N = 16) were measured during multiple pre-fatigue baseline trial blocks prior to the fatigue model. A final block of landing trials was recorded once the participant met the operational fatigue definition that was identified in Study 1. The analysis revealed that the effects of fatigue in this context are heavily dependent on the compensatory response of the individual. A continuum of responses was observed within the sample for each knee function measure. Overall, preimpact preparation and post-impact mechanics of the knee were altered with highly individualised patterns. Moreover, participants used a range of active or passive pre-impact strategies to adapt post-impact mechanics in response to quadriceps fatigue. The unique patterns identified in the data represented an optimisation of knee function based on priorities of the individual. The findings of these studies explain the lack of consensus within the literature regarding the effects of fatigue on knee function during landing. First, functional fatigue protocols lack validity in inducing fatigue-related changes in mechanical output and spectral compression of surface electromyography (sEMG) signals, compared with isokinetic exercise. Second, fatigue-related changes in knee function during landing are confounded by inter-individual variation, which limits the sensitivity of group-level analysis. By addressing these limitations, the 3rd study demonstrated the efficacies of new experimental and analytical approaches to observe fatigue-related alterations in knee function during landing. Consequently, this thesis provides new perspectives into the effects of fatigue in knee function during landing. In conclusion: • The effects of fatigue on knee function during landing depend on the response of the individual, with considerable variation present between study participants, despite similar physical characteristics. • In healthy males, adaptation of pre-impact muscle activity and postimpact knee mechanics is unique to the individual and reflects their own optimisation of demands such as energy expenditure, joint stability, sensory information and loading of knee structures. • The results of these studies should guide future exploration of adaptations in knee function to fatigue. However, research in this area should continue with reduced emphasis on the directional response of the population and a greater focus on individual adaptations of knee function.
Resumo:
Objective--To determine whether heart failure with preserved systolic function (HFPSF) has different natural history from left ventricular systolic dysfunction (LVSD). Design and setting--A retrospective analysis of 10 years of data (for patients admitted between 1 July 1994 and 30 June 2004, and with a study census date of 30 June 2005) routinely collected as part of clinical practice in a large tertiary referral hospital.Main outcome measures-- Sociodemographic characteristics, diagnostic features, comorbid conditions, pharmacotherapies, readmission rates and survival.Results--Of the 2961 patients admitted with chronic heart failure, 753 had echocardiograms available for this analysis. Of these, 189 (25%) had normal left ventricular size and systolic function. In comparison to patients with LVSD, those with HFPSF were more often female (62.4% v 38.5%; P = 0.001), had less social support, and were more likely to live in nursing homes (17.9% v 7.6%; P < 0.001), and had a greater prevalence of renal impairment (86.7% v 6.2%; P = 0.004), anaemia (34.3% v 6.3%; P = 0.013) and atrial fibrillation (51.3% v 47.1%; P = 0.008), but significantly less ischaemic heart disease (53.4% v 81.2%; P = 0.001). Patients with HFPSF were less likely to be prescribed an angiotensin-converting enzyme inhibitor (61.9% v 72.5%; P = 0.008); carvedilol was used more frequently in LVSD (1.5% v 8.8%; P < 0.001). Readmission rates were higher in the HFPSF group (median, 2 v 1.5 admissions; P = 0.032), particularly for malignancy (4.2% v 1.8%; P < 0.001) and anaemia (3.9% v 2.3%; P < 0.001). Both groups had the same poor survival rate (P = 0.912). Conclusions--Patients with HFPSF were predominantly older women with less social support and higher readmission rates for associated comorbid illnesses. We therefore propose that reduced survival in HFPSF may relate more to comorbid conditions than suboptimal cardiac management.