999 resultados para Organic geochemistry


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The geochemical studies of Sites 534 and 391 and their comparison allow us to improve the chemical characterization of different geological formations dating from the early Callovian to the Maestrichtian along the continental margin of eastern North America. Three of the formations are favorable for the preservation of organic matter: (1) the unnamed formation (middle Callovian to Oxfordian), (2) the Blake-Bahama Formation (Berriasian to Barremian), and (3) the Hatteras Formation (Aptian to Cenomanian). The organic matter is mainly detrital, except for a few organic-rich layers where a contribution of aquatic material occurs. In these organic-rich layers, the petroleum potential is medium to good. Maturation has not quite reached the beginning of the oil window even for the deepest organic material.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using methods of analysis from organic geochemistry and organic petrography, we investigated six Pliocene to Maestrichtian samples from DSDP Site 612 and five Pliocene to Eocene samples from DSDP Site 613 for the quantity, type, and thermal maturity of organic matter. At both sites, organic carbon content is low in the Eocene samples (0.10 to 0.20%) and relatively high in the Pliocene/Miocene samples (0.87 to 1.15%). The Maestrichtian samples from Site 612 contain about 0.6% organic carbon. The organic matter is predominantly terrigenous, as indicated by low hydrogen index values from Rock-Eval pyrolysis and the dominance of long-chain wax alkanes in the extractable hydrocarbons. The organic matter is at a low level of thermal maturity; measured vitrinite reflectance values were between 0.27 and 0.44%.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Twenty-six core samples from Leg 64, Holes 474, 474A, 477, 478, 479, and 481A in the Gulf of California, were provided by the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES) Advisory Panel on Organic Geochemistry for analysis. The high heat flow characteristic of the basin provides an opportunity to study the effect of temperature on the diagenesis of organic matter. The contents and carbon isotope compositions of the organic matter and bitumen fractions of different polarity, isoprenoid and normal alkane distributions, and the nature of tetrapyrrole pigments were studied. Relative contents of hydrocarbons and bitumens depend on the thermal history of the deposits. Among other criteria, the nature and content of tetrapyrrole pigments appear to be most sensitive to thermal stress. Whereas only chlorins are present in the immature samples, porphyrins, including VO-porphyrins, appear in the thermally altered deposits, despite the shallow burial depth. Alkane distributions in thermally changed samples are characterized by low values of phytane to 2-C18 ratios and an odd/even carbon preference index close to unity. The thermally altered samples show unusual carbon isotope distributions of the bitumen fractions. The data also provide some evidence concerning the source of the organic matter and the degree of diagenesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During Deep Sea Drilling Project (DSDP) Leg 84 a core 1 m long and 6 cm in diameter of massive gas hydrate was unexpectedly recovered at Site 570 in upper slope sediment of the Middle America Trench offshore of Guatemala. This core contained only 5-7% sediment, the remainder being the solid hydrate composed of gas and water. Samples of the gas hydrate were decomposed under controlled conditions in a closed container maintained at 4°C. Gas pressure increased and asymptotically approached the equilibrium decomposition pressure for an ideal methane hydrate, CH4.5-3/4H2O, of 3930 kPa and approached to this pressure after each time gas was released, until the gas hydrate was completely decomposed. The gas evolved during hydrate decomposition was 99.4% methane, ~0.2% ethane, and ~0.4% CO2. Hydrocarbons from propane to heptane were also present, but in concentrations of less than 100 p.p.m. The carbon-isotopic composition of methane was -41 to -44 per mil, relative to PDB standard. The observed volumetric methane/water ratio was 64 or 67, which indicates that before it was stored and analyzed, the gas hydrate probably had lost methane. The sample material used in the experiments was likely a mixture of methane hydrate and water ice. Formation of this massive gas hydrate probably involved the following processes: (i) upward migration of gas and its accumulation in a zone where conditions favored the growth of gas hydrates, (ii) continued, unusually rapid biological generation of methane, and (iii) release of gas from water solution as pressure decreased due to sea level lowering and tectonic uplift.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As part of a continuing program of organic-geochemistry studies of sediments recovered by the Deep Sea Drilling Project, we have analyzed the types, amounts, and thermal-alteration indices of organic matter in samples collected from the landward wall of the Japan Trench on Legs 56 and 57. The samples were canned aboard ship, enabling us to measure also their gas contents. In addition, we analyzed the heavy C15+ hydrocarbons, NSO compounds, and asphaltenes extracted from selected samples. Our samples form a transect down the trench wall, from Holes 438 and 438A (water depth 1558 m), through Holes 435 and 435A (water depth 3401 m), and 440 (water depth 4507 m), to Holes 434 and 434B (water depth 5986 m). The trench wall is the continental slope of Japan. Its sediments are Cenozoic hemipelagic diatomaceous muds that were deposited where they are found or have slumped from farther up the slope. Their terrigenous components probably were deposited from near-bottom nepheloid layers transported by bottom currents or in low density flows (Arthur et al., 1978). Our objective was to find out what types of organic matter exist in the sediment and to estimate their potential for generation of hydrocarbons.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Forty-three core sections from Sites 434, 435, 438, 439, and 440 on the landward side and six core sections from Site 436 on the seaward side of the Japan Trench were obtained through the JOIDES Organic Geochemistry Advisory Panel for study of the origin and state of genesis of the organic matter associated with these continental slope, accretionary wedge, and outer trench slope sediments of the Japan Trench. The lipid fraction of these sediments is derived primarily from terrigenous organic matter and thus is allochthonous to the area. The associated kerogen fraction is of mixed allochthonous and autochthonous origin. The total organic carbon content seaward of the trench is less than that on the landward side. The composition of this organic matter is similar but not identical to that found in the landward side sediments. The organic matter within these sediments is in a diagenetic state in which geopolymerization of biogenic organic matter is nearly complete, but microbial alteration is still occurring.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A study of samples from DSDP Leg 47 shows that transformation of organic matter in deep sea sediments is completly analogous to evolution of organic matter in sedimentary sequences on continents and depends on the same factors. Crucial among these factors are: genesis of organic matter, nature of its diagenetic changes, and current stage of catagenesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The organic geochemistry of Sites 1108 and 1109 of the Woodlark Basin, offshore Papua New Guinea, was studied to determine whether thermally mature hydrocarbons were present in the penetrated section and, if present, whether they are genetically related to the penetrated "coaly" interval. Both the organic carbon and pyrolysis data indicate that there is no significant hydrocarbon source-rock potential at Site 1108. The hydrocarbons encountered during drilling appear to be indigenous and not migrated products or contaminants. In contrast, the coaly interval at Site 1109 contains zones with significant hydrocarbon-generation potential. Several independent lines of evidence indicate that the coaly sequence encountered at Site 1109 is thermally immature. The Site 1108 methane stable-carbon isotope composition does not display a clear trend with depth as would be expected if it was solely reflecting a maturation profile. The measured isotopic composition of methane has most probably been altered by fractionation during sample handling and storage. This fractionation would result in isotopically heavier values than would be obtained on free gas. The organic geochemical data gathered indicate that Site 1108 can be safely revisited and that the organic-rich sediments encountered at Site 1109 were not the source of the gas encountered at Site 1108.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ocean Drilling Program Leg 207 recovered thick sequences of Albian to Santonian organic-carbon-rich claystones at five drill-sites on the Demerara Rise in the western equatorial Atlantic Ocean. Dark-colored, finely laminated, Cenomanian-Santonian black shale sequences contain between 2% and 15% organic carbon and encompass Oceanic Anoxic Events 2 and 3. High Rock-Eval hydrogen indices signify that the bulk of the organic matter in these sequences is marine in origin. However, d13Corg values lie mostly between -30 per mil and -27 per mil, and TOC/TN ratios range from 15 to 42, which both mimic the source signatures of modern C3 land plants. The contradictions in organic matter source indicators provide important implications about the depositional conditions leading to the black shale accumulations. The low d13Corg values, which are actually common in mid-Cretaceous marine organic matter, are consequences of the greenhouse climate prevailing at that time and an associated accelerated hydrologic cycle. The elevated C/N ratios, which are also typical of black shales, indicate depressed organic matter degradation associated with low-oxygen conditions in the water column that favored preservation of carbon-rich forms of marine organic matter over nitrogen-rich components. Underlying the laminated Cenomanian-Santonian sequences are homogeneous, dark-colored, lower to middle Albian siltstones that contain between 0.2% and 9% organic carbon. The organic matter in these rocks is mostly marine in origin, but it occasionally includes large proportions of land-derived material.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Organic matter in sediments from Sites 515, 516, and 517 reflects a history of low marine productivity and of oxygenated bottom waters in the western South Atlantic since the Pliocene. Organic carbon contents are low, averaging 0.26% of sediment weight. Distributions of n-alkanes, n-alkanols, and n-alkanoic acids show evidence of microbial reworking, and n-alkanes contain important terrigenous contributions, presumably of eolian origin.