910 resultados para Ordered probit regression
Resumo:
Lean meat percentage (LMP) is an important carcass quality parameter. The aim of this work is to obtain a calibration equation for the Computed Tomography (CT) scans with the Partial Least Square Regression (PLS) technique in order to predict the LMP of the carcass and the different cuts and to study and compare two different methodologies of the selection of the variables (Variable Importance for Projection — VIP- and Stepwise) to be included in the prediction equation. The error of prediction with cross-validation (RMSEPCV) of the LMP obtained with PLS and selection based on VIP value was 0.82% and for stepwise selection it was 0.83%. The prediction of the LMP scanning only the ham had a RMSEPCV of 0.97% and if the ham and the loin were scanned the RMSEPCV was 0.90%. Results indicate that for CT data both VIP and stepwise selection are good methods. Moreover the scanning of only the ham allowed us to obtain a good prediction of the LMP of the whole carcass.
Resumo:
This paper explores the effects of two main sources of innovation - intramural and external R&D— on the productivity level in a sample of 3,267 Catalonian firms. The data set used is based on the official innovation survey of Catalonia which was a part of the Spanish sample of CIS4, covering the years 2002-2004. We compare empirical results by applying usual OLS and quantile regression techniques both in manufacturing and services industries. In quantile regression, results suggest different patterns at both innovation sources as we move across conditional quantiles. The elasticity of intramural R&D activities on productivity decreased when we move up the high productivity levels both in manufacturing and services sectors, while the effects of external R&D rise in high-technology industries but are more ambiguous in low-technology and knowledge-intensive services. JEL codes: O300, C100, O140 Keywords: Innovation sources, R&D, Productivity, Quantile Regression
Resumo:
When actuaries face with the problem of pricing an insurance contract that contains different types of coverage, such as a motor insurance or homeowner's insurance policy, they usually assume that types of claim are independent. However, this assumption may not be realistic: several studies have shown that there is a positive correlation between types of claim. Here we introduce different regression models in order to relax the independence assumption, including zero-inflated models to account for excess of zeros and overdispersion. These models have been largely ignored to multivariate Poisson date, mainly because of their computational di±culties. Bayesian inference based on MCMC helps to solve this problem (and also lets us derive, for several quantities of interest, posterior summaries to account for uncertainty). Finally, these models are applied to an automobile insurance claims database with three different types of claims. We analyse the consequences for pure and loaded premiums when the independence assumption is relaxed by using different multivariate Poisson regression models and their zero-inflated versions.
Resumo:
Calomys callosus a wild rodent, is a natural host of Trypanosoma cruzi. Twelve C. callosus were infected with 10(5) trypomastigotes of the F strain (a myotropic strain) of T. cruzi. Parasitemia decreased on the 21 st day becoming negative around the 40th day of infection. All animals survived but had positive parasitological tests, until the end of the experiment. The infected animals developed severe inflammation in the myocardium and skeletal muscle. This process was pronounced from the 26 th to the 30th day and gradually subsided from the 50 th day becoming absent or residual on the 64 th day after infection. Collagen was identified by the picro Sirius red method. Fibrogenesis developed early, but regression of fibrosis occurred between the 50th and 64th day. Ultrastructural study disclosed a predominance of macrophages and fibroblasts in the inflammatory infiltrates, with small numbers of lymphocytes. Macrophages had active phagocytosis and showed points of contact with altered muscle cells. Different degrees of matrix expansion were present, with granular and fibrilar deposits and collagen bundles. These alterations subsided by the 64th days. Macrophages seem to be the main immune effector cell in the C. callosus model of infection with T. cruzi. The mechanisms involved in the rapid fibrogenesis and its regression deserve further investigation.
Resumo:
Background Individual signs and symptoms are of limited value for the diagnosis of influenza. Objective To develop a decision tree for the diagnosis of influenza based on a classification and regression tree (CART) analysis. Methods Data from two previous similar cohort studies were assembled into a single dataset. The data were randomly divided into a development set (70%) and a validation set (30%). We used CART analysis to develop three models that maximize the number of patients who do not require diagnostic testing prior to treatment decisions. The validation set was used to evaluate overfitting of the model to the training set. Results Model 1 has seven terminal nodes based on temperature, the onset of symptoms and the presence of chills, cough and myalgia. Model 2 was a simpler tree with only two splits based on temperature and the presence of chills. Model 3 was developed with temperature as a dichotomous variable (≥38°C) and had only two splits based on the presence of fever and myalgia. The area under the receiver operating characteristic curves (AUROCC) for the development and validation sets, respectively, were 0.82 and 0.80 for Model 1, 0.75 and 0.76 for Model 2 and 0.76 and 0.77 for Model 3. Model 2 classified 67% of patients in the validation group into a high- or low-risk group compared with only 38% for Model 1 and 54% for Model 3. Conclusions A simple decision tree (Model 2) classified two-thirds of patients as low or high risk and had an AUROCC of 0.76. After further validation in an independent population, this CART model could support clinical decision making regarding influenza, with low-risk patients requiring no further evaluation for influenza and high-risk patients being candidates for empiric symptomatic or drug therapy.
Resumo:
In a recent paper Bermúdez [2009] used bivariate Poisson regression models for ratemaking in car insurance, and included zero-inflated models to account for the excess of zeros and the overdispersion in the data set. In the present paper, we revisit this model in order to consider alternatives. We propose a 2-finite mixture of bivariate Poisson regression models to demonstrate that the overdispersion in the data requires more structure if it is to be taken into account, and that a simple zero-inflated bivariate Poisson model does not suffice. At the same time, we show that a finite mixture of bivariate Poisson regression models embraces zero-inflated bivariate Poisson regression models as a special case. Additionally, we describe a model in which the mixing proportions are dependent on covariates when modelling the way in which each individual belongs to a separate cluster. Finally, an EM algorithm is provided in order to ensure the models’ ease-of-fit. These models are applied to the same automobile insurance claims data set as used in Bermúdez [2009] and it is shown that the modelling of the data set can be improved considerably.
Resumo:
This article focuses on business risk management in the insurance industry. A methodology for estimating the profit loss caused by each customer in the portfolio due to policy cancellation is proposed. Using data from a European insurance company, customer behaviour over time is analyzed in order to estimate the probability of policy cancelation and the resulting potential profit loss due to cancellation. Customers may have up to two different lines of business contracts: motor insurance and other diverse insurance (such as, home contents, life or accident insurance). Implications for understanding customer cancellation behaviour as the core of business risk management are outlined.
Resumo:
Background: Thin melanomas (Breslow thickness <= 1 mm) are considered highly curable. The aim of this study was to evaluate the correlation between histological tumour regression and sentinel lymph node (SLN) involvement in thin melanomas. Patients and methods: This was a retrospective single-centre study of 34 patients with thin melanomas undergoing SLN biopsy between April 1998 and January 2005. Results: The study included 14 women and 20 men of mean age 56.3 years. Melanomas were located on the neck (n = 3), soles (n = 4), trunk (n = 13) and extremities (n = 14). Pathological examination showed 25 SSM, four acral lentiginous melanomas, three in situ melanomas, one nodular melanoma and one unclassified melanoma with a mean Breslow thickness of 0.57 mm. Histological tumour regression was observed in 26 over 34 cases and ulceration was found in one case. Clark levels were as follows: I (n = 3), II (n = 20), III (n = 9), IV (n = 2). Growth phase was available in 15 cases (seven radial and eight vertical). Mitotic rates, available in 24 cases, were: 0 (n = 9), 1 (n = 11), 2 (n = 2), 3 (n = 1), 6 (n = 1). One patient with histological tumour regression (2.9% of cases and 3.8% of cases with regressing tumours) had a metastatic SLN. One patient negative for SLN had a lung relapse and died of the disease. Mean follow-up was 26.2 months. Conclusion: The results of the present study and the analysis of the literature show that histological regression of the primary tumour does not seem predictive of higher risk of SLN involvement in thin melanomas. This suggests that screening for SLN is not indicated in thin melanomas, even those with histological regression.
Resumo:
This paper explores how absorptive capacity affects the innovative performance and productivity dynamics of Spanish firms. A firm’s efficiency levels are measured using two variables: the labour productivity and the Total Factor Productivity (TFP). The theoretical framework is based on the seminal contributions of Cohen and Levinthal (1989, 1990) regarding absorptive capacity; and the applied framework is based on the four-stage structural model proposed by Crépon, Duguet and Mairesse (1998) for setting the determinants of R&D, the effects of R&D activities on innovation outputs, and the impacts of innovation on firm productivity. The present study uses a twostage structural model. In the first stage, a probit estimation is used to investigate how the sources of R&D, the absorptive capacity and a vector of the firm’s individual features influence the firm’s likelihood of developing innovations in products or processes. In the second phase, a quantile regression is used to analyze the effect of R&D sources, absorptive capacity and firm characteristics on productivity. This method shows the elasticity of each exogenous variable on productivity according to the firms’ levels of efficiency, and thus allows us to distinguish between firms that are close to the technological frontier and those that are further away from it. We used extensive firm-level panel data from 5,575 firms for the 2004-2009 period. The results show that the internal absorptive capacity has a strong impact on the productivity of firms, whereas the role of external absorptive capacity differs according to nature of the each industry and according the distance of firms from the technological frontier. Key words: R&D sources, innovation strategies, absorptive capacity, technological distance, quantile regression.
Resumo:
This paper analyzes the effect of firms’ innovation activities on their growth performance. In particular, we observe how important innovation is for high-growth firms (HGFs) for an extensive sample of Spanish manufacturing and services firms. The panel data used comprises diverse waves of Spanish CIS over the the period 2004-2008. First, a probit analysis determines whether innovation affects the probability of being a high-growth firm. And second, a quantile regression technique is applied to explore the determinants and characteristics of specific groups of firms (manufacturing versus service firms and high-tech versus low-tech firms). It is revealed that R&D plays a significant role in the probability of becoming a HGF. Investment in internal and external R&D per employee has a positive impact on firm growth (although internal R&D presents a significant impact in the last quantiles, external R&D is significant up to the median). Furthermore, we show evidence that there is a positive impact of employment (sales) growth on the sales (employment) growth. Keywords: high-growth firms, firm growth, innovation activity JEL Classifications: L11, L25, O30
Resumo:
PURPOSE: Ipilimumab is a monoclonal antibody that blocks the immune-inhibitory interaction between CTL antigen 4 (CTLA-4) and its ligands on T cells. Clinical trials in cancer patients with ipilimumab have shown promising antitumor activity, particularly in patients with advanced melanoma. Often, tumor regressions in these patients are correlated with immune-related side effects such as dermatitis, enterocolitis, and hypophysitis. Although these reactions are believed to be immune-mediated, the antigenic targets for the cellular or humoral immune response are not known. EXPERIMENTAL DESIGN: We enrolled patients with advanced melanoma in a phase II study with ipilimumab. One of these patients experienced a complete remission of his tumor. The specificity and functional properties of CD8-positive T cells in his peripheral blood, in regressing tumor tissue, and at the site of an immune-mediated skin rash were investigated. RESULTS: Regressing tumor tissue was infiltrated with CD8-positive T cells, a high proportion of which were specific for Melan-A. The skin rash was similarly infiltrated with Melan-A-specific CD8-positive T cells, and a dramatic (>30-fold) increase in Melan-A-specific CD8-positive T cells was apparent in peripheral blood. These cells had an effector phenotype and lysed Melan-A-expressing tumor cells. CONCLUSIONS: Our results show that Melan-A may be a major target for both the autoimmune and antitumor reactions in patients treated with anti-CTLA-4, and describe for the first time the antigen specificity of CD8-positive T cells that mediate tumor rejection in a patient undergoing treatment with an anti-CTLA-4 antibody. These findings may allow a better integration of ipilimumab into other forms of immunotherapy.
Resumo:
The aim of this work is to establish a relationship between schistosomiasis prevalence and social-environmental variables, in the state of Minas Gerais, Brazil, through multiple linear regression. The final regression model was established, after a variables selection phase, with a set of spatial variables which contains the summer minimum temperature, human development index, and vegetation type variables. Based on this model, a schistosomiasis risk map was built for Minas Gerais.