996 resultados para Optimal tests
Resumo:
The design-build (DB) system is a popular and effective delivery method of construction projects worldwide. After owners decide to procure their projects through the DB system, they may wish to determine the optimal proportion of design to be provided in the DB request for proposals (RFPs), which serve as solicitations for design-builders and describe the scope of work. However, this presents difficulties to DB owners and there is little, if any, systematic research in this area. This paper reports on an empirical study in the USA entailing both an online questionnaire survey and Delphi survey to identify and evaluate the factors influencing owners’ decisions in determining the proportion of design to include in DB RFPs. Eleven factors are identified, i.e. (1) clarity of project scope; (2) applicability of performance specifications; (3) desire for design innovation; (4) site constraints; (5) availability of competent design-builders; (6) project control requirements; (7) user group involvement level; (8) third party requirements; (9) owner experience with DB; (10) project complexity; and (11) schedule constraints. A statistically significant agreement on the eleven factors was also obtained from the (mainly non-owner) Delphi experts. Although some of the experts hold different opinions on how these factors affect the proportion of design, these findings furnish various stakeholders with a better understanding of the delivery process of DB projects and the appropriate provision of project information in DB RFPs. As the result is mainly industry opinion concerning the optimal proportion of design, in addition and for completeness, future studies should be conducted to obtain a big picture of the optimal proportion of design by means of seeking owners’ inputs.
Resumo:
Background Although the non-operative management of closed humeral midshaft fractures has been advocated for years, the increasing popularity of operative intervention has left the optimal treatment choice unclear. Objective To compare the outcomes of operative and non-operative treatment of traumatic closed humeral midshaft fractures in adult patients. Methods A multicentre prospective comparative cohort study across 20 centres was conducted. Patients with AO type 12 A2, A3 and B2 fractures were treated with a functional brace or a retrograde-inserted unreamed humeral nail. Follow-up measurements were taken at 6, 12 and 52 weeks after the injury. The primary outcome was fracture healing after 1 year. Secondary outcomes included sub-items of the Constant score, general patient satisfaction, complications and cost-effectiveness parameters. Functions of the uninjured extremity were used as reference parameters. Intention-to-treat analysis was applied with the use of t-tests, Fisher’s exact tests, Mann–Whitney U-tests and adjusted analysis of variance (ANOVA). Results Forty-seven patients were included. The patient sample consisted of 23 women and 24 men, with a mean age of 52.7 years (range 17–86 years). Of the 47 cases, 14 were treated non-operatively and 33 operatively. The follow-up rate at 1 year was 81%. After 1 year, 11 fractures (100%) healed in the non-operative group and at least 24 fractures (≥89%) healed in the operative group [1 non-union patient (4%) and no data for 2 patients (7%)]. There were no significant differences in pain, range of motion (ROM) of the shoulder and elbow, and return to work after 6 weeks, 12 weeks and 1 year. Although operatively treated patients showed significantly greater shoulder abduction strength (p = 0.036), elbow flexion strength (p = 0.021), functional hand positioning (p = 0.008) and return to recreational activities (p = 0.043) after 6 weeks, no statistically significant differences existed in any outcome measure at the 1-year follow-up. Conclusions Our findings indicate that the non-operative management of humeral midshaft fractures can be expected to have similar functional outcomes and patient satisfaction at 1 year, despite an early benefit to operative treatment. If no radiological evidence of fracture healing exists in non-operatively treated patients during early follow-up, a switch to surgical treatment results in good functional outcomes and patient satisfaction. Keywords: Humeral shaft fracture, Non-operative treatment, Functional brace, Operative treatment, Unreamed humeral nail (UHN), Prospective, Cohort study
Resumo:
Background Despite evidence that up to 35% of patients with cancer experience significant distress, access to effective psychosocial care is limited by lack of systematic approaches to assessment, a paucity of psychosocial services, and patient reluctance to accept treatment either because of perceived stigma or difficulties with access to specialist psycho-oncology services due to isolation or disease burden. This paper presents an overview of a randomised study to evaluate the effectiveness of a brief tailored psychosocial Intervention delivered by health professionals in cancer care who undergo focused training and participate in clinical supervision. Methods/design Health professionals from the disciplines of nursing, occupational therapy, speech pathology, dietetics, physiotherapy or radiation therapy will participate in training to deliver the psychosocial Intervention focusing on core concepts of supportive-expressive, cognitive and dignity-conserving care. Health professional training will consist of completion of a self-directed manual and participation in a skills development session. Participating health professionals will be supported through structured clinical supervision whilst delivering the Intervention. In the stepped wedge design each of the 5 participating clinical sites will be allocated in random order from Control condition to Training then delivery of the Intervention. A total of 600 patients will be recruited across all sites. Based on level of distress or risk factors eligible patients will receive up to 4 sessions, each of up to 30 minutes in length, delivered face-to-face or by telephone. Participants will be assessed at baseline and 10-week follow-up. Patient outcome measures include anxiety and depression, quality of life, unmet psychological and supportive care needs. Health professional measures include psychological morbidity, stress and burnout. Process evaluation will be conducted to assess perceptions of participation in the study and the factors that may promote translation of learning into practice. Discussion This study will provide important information about the effectiveness of a brief tailored psychological Intervention for patients with cancer and the potential to prevent development of significant distress in patients considered at risk. It will yield data about the feasibility of this model of care in routine clinical practice and identify enablers and barriers to its systematic implementation in cancer settings.
Resumo:
LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel section produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. The LSBs are commonly used as floor joists and bearers with web openings in residential, industrial and commercial buildings. Their shear strengths are considerably reduced when web openings are included for the purpose of locating building services. Shear tests of LSBs with web openings have shown that there is up to a 60% reduction in the shear capacity due to the inclusion of web openings. Hence there is a need to improve the shear capacity of LSBs with web openings. A cost effective way to eliminate the shear capacity reduction is to attach suitable stiffeners around the web openings. Hence experimental studies were undertaken to investigate the shear behaviour and strength of LSBs with stiffened web openings. In this research, various stiffening methods using plate and LSB stiffeners attached to LSBs using both welding and screw-fastening were attempted. Our test results showed that the stiffening arrangements recommended by past research for cold-formed steel channel beams are not adequate to restore the shear strengths of LSBs with web openings. Therefore new stiffener arrangements were proposed for LSBs with web openings. This paper presents the details of this experimental study and the results including the details of the optimum stiffener details for LiteSteel beams.
Resumo:
Cold-formed steel members are increasingly used as primary structural elements in the building industries around the world due to the availability of thin and high strength steels and advanced cold-forming technologies. Cold-formed steel lipped channel beams (LCB) are commonly used as flexural members such as floor joists and bearers. However, their shear capacities are determined based on conservative design rules. Current practice in flooring systems is to include openings in the web element of floor joists or bearers so that building services can be located within them. However, limited research has been undertaken on the shear behaviour and strength of LCBs with web openings. Hence a detailed experimental study involving 32 shear tests was undertaken to investigate the shear behaviour and strength of LCBs with web openings. Simply supported test specimens of LCBs with an aspect ratio of 1.0 and 1.5 were loaded at mid-span until failure. This paper presents the details of this experimental study and the results of their shear capacities and behavioural characteristics. Experimental results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LCBs with web openings. Improved design equations have been proposed for the shear strength of LCBs with web openings based on the experimental results from this study.
Resumo:
This paper presents the details of an experimental study of a cold-formed steel beam known as LiteSteel Beam (LSB) subject to combined shear and bending actions. The LSBs have the beneficial characteristics of torsionally rigid rectangular hollow flanges combined with economical fabrication processes from a single strip of high strength steel. They combine the stability of hot-rolled steel sections with the high strength to weight ratio of conventional cold-formed steel sections. The LSB sections are commonly used as flexural members in residential, industrial and commercial buildings. In order to ensure safe and efficient designs of LSBs, many research studies have been undertaken on the flexural and shear strengths of LSBs. To date, however, no investigation has been conducted into the strength of LSB sections under combined shear and bending actions. Hence a detailed experimental study involving 18 tests was undertaken to investigate the behaviour and strength of LSBs under combined shear and bending actions. Test results showed that AS/NZS 4600 design rules for unstiffened webs grossly underestimated the capacity of LSBs. Therefore improved design equations were proposed for the combined shear and bending capacities of LSBs based on experimental results.
Resumo:
Cold-formed steel lipped channel beams (LCB) are used extensively in residential, industrial and commercial buildings as load bearing structural elements. Their shear strengths are considerably reduced when web openings are included for the purpose of locating building services. Past research has shown that the shear capacities of LCBs were reduced by up to 70% due to the inclusion of these web openings. Hence there is a need to improve the shear capacities of LCBs with web openings. A cost effective way of eliminating the detrimental effects of large web openings is to attach suitable stiffeners around the web openings and restore the original shear strength and stiffness of the LCBs. Hence detailed experimental studies were undertaken to investigate the shear behaviour and strength of LCBs with stiffened web openings. Both plate and stud stiffeners with varying sizes and thicknesses were attached to the web elements of LCBs using different screw-fastening arrangements. Simply supported test specimens of LCBs with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. Test results showed that the plate stiffeners established using AISI recommendations are inadequate to restore the shear strengths of LCBs with web openings. Hence new stiffener arrangements have been proposed for LCBs based on experimental results. This paper presents the details of this experimental study on the shear strength of lipped channel beams with stiffened web openings, and the results.
Resumo:
Cold-formed steel stud walls are an important component of Light Steel Framing (LSF) building systems used in commercial, industrial and residential buildings. In the conventional LSF stud wall systems, thin-walled steel studs are protected from fire by placing one or two layers of plasterboard on both sides with or without cavity insulation. However, there is very limited data about the structural and thermal performance of these wall systems while past research showed contradicting results about the benefits of cavity insulation. This research proposed a new LSF stud wall system in which a composite panel made of two plasterboards with insulation between them was used to improve the fire rating of walls. Full scale fire tests were conducted using both conventional steel stud walls with and without the use of cavity insulation and the new composite panel system. Eleven full scale load bearing wall specimens were tested to study the thermal and structural performances of the load bearing wall assemblies under standard fire conditions. These tests showed that the use of cavity insulation led to inferior fire performance of walls while also providing good explanations and supporting test data to overcome the incorrect industry assumptions about cavity insulation. Tests demonstrated that the use of external insulation in a composite panel form enhanced the thermal and structural performances of stud walls and increased their fire resistance rating significantly. This paper presents the details of the full scale fire tests of load-bearing wall assemblies lined with plasterboards and different types of insulation under varying load ratios. Test results including the temperature and deflection profiles of walls measured during the fire tests will be presented along with their failure modes and failure times.
Resumo:
There is a need for an accurate real-time quantitative system that would enhance decision-making in the treatment of osteoarthritis. To achieve this objective, significant research is required that will enable articular cartilage properties to be measured and categorized for health and functionality without the need for laboratory tests involving biopsies for pathological evaluation. Such a system would provide the capability of access to the internal condition of the cartilage matrix and thus extend the vision-based arthroscopy that is currently used beyond the subjective evaluation of surgeons. The system required must be able to non-destructively probe the entire thickness of the cartilage and its immediate subchondral bone layer. In this thesis, near infrared spectroscopy is investigated for the purpose mentioned above. The aim is to relate it to the structure and load bearing properties of the cartilage matrix to the near infrared absorption spectrum and establish functional relationships that will provide objective, quantitative and repeatable categorization of cartilage condition outside the area of visible degradation in a joint. Based on results from traditional mechanical testing, their innovative interpretation and relationship with spectroscopic data, new parameters were developed. These were then evaluated for their consistency in discriminating between healthy viable and degraded cartilage. The mechanical and physico-chemical properties were related to specific regions of the near infrared absorption spectrum that were identified as part of the research conducted for this thesis. The relationships between the tissue's near infrared spectral response and the new parameters were modeled using multivariate statistical techniques based on partial least squares regression (PLSR). With significantly high levels of statistical correlation, the modeled relationships were demonstrated to possess considerable potential in predicting the properties of unknown tissue samples in a quick and non-destructive manner. In order to adapt near infrared spectroscopy for clinical applications, a balance between probe diameter and the number of active transmit-receive optic fibres must be optimized. This was achieved in the course of this research, resulting in an optimal probe configuration that could be adapted for joint tissue evaluation. Furthermore, as a proof-of-concept, a protocol for obtaining the new parameters from the near infrared absorption spectra of cartilage was developed and implemented in a graphical user interface (GUI)-based software, and used to assess cartilage-on-bone samples in vitro. This conceptual implementation has been demonstrated, in part by the individual parametric relationship with the near infrared absorption spectrum, the capacity of the proposed system to facilitate real-time, non-destructive evaluation of cartilage matrix integrity. In summary, the potential of the optical near infrared spectroscopy for evaluating articular cartilage and bone laminate has been demonstrated in this thesis. The approach could have a spin-off for other soft tissues and organs of the body. It builds on the earlier work of the group at QUT, enhancing the near infrared component of the ongoing research on developing a tool for cartilage evaluation that goes beyond visual and subjective methods.