990 resultados para Optimal composition
Resumo:
Musical value cannot be experienced without direct knowledge of music, and engagement with the interactive elements of materials, expressive character and structure. Through these channels something is communicated, something is transmitted, some residue of ‘meaning’ is left with us. When a work of art stirs us it is more than simply sensory stimulation or some kind of emotional indulgence. We are gaining knowledge and expanding our experience... contributing to knowledge of ourselves and of the world.
Resumo:
This PhD study examines whether water allocation becomes more productive when it is re-allocated from 'low' to 'high' efficient alternative uses in village irrigation systems (VISs) in Sri Lanka. Reservoir-based agriculture is a collective farming economic activity, which inter-sectoral allocation of water is assumed to be inefficient due to market imperfections and weak user rights. Furthermore, the available literature shows that a „head-tail syndrome. is the most common issue for intra-sectoral water management in „irrigation. agriculture. This research analyses the issue of water allocation by using primary data collected from two surveys of 460 rice farmers and 325 fish farming groups in two administrative districts in Sri Lanka. Technical efficiency estimates are undertaken for both rice farming and culture-based fisheries (CBF) production. The equi-marginal principle is applied for inter and intra-sectoral allocation of water. Welfare benefits of water re-allocation are measured through consumer surplus estimation. Based on these analyses, the overall findings of the thesis can be summarised as follows. The estimated mean technical efficiency (MTE) for rice farming is 73%. For CBF production, the estimated MTE is 33%. The technical efficiency distribution is skewed to the left for rice farming, while it skewed to the right for CBF production. The results show that technical efficiency of rice farming can be improved by formalising transferability of land ownership and, therefore, water user rights by enhancing the institutional capacity of Farmer Organisations (FOs). Other effective tools for improving technical efficiency of CBF production are strengthening group stability of CBF farmers, improving the accessibility of official consultation, and attracting independent investments. Inter-sectoral optimal allocation shows that the estimated inefficient volume of water in rice farming, which can be re-allocated for CBF production, is 32%. With the application of successive policy instruments (e.g., a community transferable quota system and promoting CBF activities), there is potential for a threefold increase in marginal value product (MVP) of total reservoir water in VISs. The existing intra-sectoral inefficient volume of water use in tail-end fields and head-end fields can potentially be removed by reducing water use by 10% and 23% respectively and re-allocating this to middle fields. This re-allocation may enable a twofold increase in MVP of water used in rice farming without reducing the existing rice output, but will require developing irrigation practices to facilitate this re-allocation. Finally, the total productivity of reservoir water can be increased by responsible village level institutions and primary level stakeholders (i.e., co-management) sharing responsibility of water management, while allowing market forces to guide the efficient re-allocation decisions. This PhD has demonstrated that instead of farmers allocating water between uses haphazardly, they can now base their decisions on efficient water use with a view to increasing water productivity. Such an approach, no doubt will enhance farmer incomes and community welfare.
Resumo:
A simple phenomenological model for the relationship between structure and composition of the high Tc cuprates is presented. The model is based on two simple crystal chemistry principles: unit cell doping and charge balance within unit cells. These principles are inspired by key experimental observations of how the materials accommodate large deviations from stoichiometry. Consistent explanations for significant HTSC properties can be explained without any additional assumptions while retaining valuable insight for geometric interpretation. Combining these two chemical principles with a review of Crystal Field Theory (CFT) or Ligand Field Theory (LFT), it becomes clear that the two oxidation states in the conduction planes (typically d8 and d9) belong to the most strongly divergent d-levels as a function of deformation from regular octahedral coordination. This observation offers a link to a range of coupling effects relating vibrations and spin waves through application of Hund’s rules. An indication of this model’s capacity to predict physical properties for HTSC is provided and will be elaborated in subsequent publications. Simple criteria for the relationship between structure and composition in HTSC systems may guide chemical syntheses within new material systems.
Resumo:
Road dust contain potentially toxic pollutants originating from a range of anthropogenic sources common to urban land uses and soil inputs from surrounding areas. The research study analysed the mineralogy and morphology of dust samples from road surfaces from different land uses and background soil samples to characterise the relative source contributions to road dust. The road dust consist primarily of soil derived minerals (60%) with quartz averaging 40-50% and remainder being clay forming minerals of albite, microcline, chlorite and muscovite originating from surrounding soils. About 2% was organic matter primarily originating from plant matter. Potentially toxic pollutants represented about 30% of the build-up. These pollutants consist of brake and tire wear, combustion emissions and fly ash from asphalt. Heavy metals such as Zn, Cu, Pb, Ni, Cr and Cd primarily originate from vehicular traffic while Fe, Al and Mn primarily originate from surrounding soils. The research study confirmed the significant contribution of vehicular traffic to dust deposited on urban road surfaces.
Resumo:
Distributed generators (DGs) are defined as generators that are connected to a distribution network. The direction of the power flow and short-circuit current in a network could be changed compared with one without DGs. The conventional protective relay scheme does not meet the requirement in this emerging situation. As the number and capacity of DGs in the distribution network increase, the problem of coordinating protective relays becomes more challenging. Given this background, the protective relay coordination problem in distribution systems is investigated, with directional overcurrent relays taken as an example, and formulated as a mixed integer nonlinear programming problem. A mathematical model describing this problem is first developed, and the well-developed differential evolution algorithm is then used to solve it. Finally, a sample system is used to demonstrate the feasiblity and efficiency of the developed method.
Resumo:
Some uncertainties such as the stochastic input/output power of a plug-in electric vehicle due to its stochastic charging and discharging schedule, that of a wind unit and that of a photovoltaic generation source, volatile fuel prices and future uncertain load growth, all together could lead to some risks in determining the optimal siting and sizing of distributed generators (DGs) in distributed systems. Given this background, under the chance constrained programming (CCP) framework, a new method is presented to handle these uncertainties in the optimal sitting and sizing problem of DGs. First, a mathematical model of CCP is developed with the minimization of DGs investment cost, operational cost and maintenance cost as well as the network loss cost as the objective, security limitations as constraints, the sitting and sizing of DGs as optimization variables. Then, a Monte Carolo simulation embedded genetic algorithm approach is developed to solve the developed CCP model. Finally, the IEEE 37-node test feeder is employed to verify the feasibility and effectiveness of the developed model and method. This work is supported by an Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO) Project on Intelligent Grids Under the Energy Transformed Flagship, and Project from Jiangxi Power Company.
Resumo:
Concerns regarding groundwater contamination with nitrate and the long-term sustainability of groundwater resources have prompted the development of a multi-layered three dimensional (3D) geological model to characterise the aquifer geometry of the Wairau Plain, Marlborough District, New Zealand. The 3D geological model which consists of eight litho-stratigraphic units has been subsequently used to synthesise hydrogeological and hydrogeochemical data for different aquifers in an approach that aims to demonstrate how integration of water chemistry data within the physical framework of a 3D geological model can help to better understand and conceptualise groundwater systems in complex geological settings. Multivariate statistical techniques(e.g. Principal Component Analysis and Hierarchical Cluster Analysis) were applied to groundwater chemistry data to identify hydrochemical facies which are characteristic of distinct evolutionary pathways and a common hydrologic history of groundwaters. Principal Component Analysis on hydrochemical data demonstrated that natural water-rock interactions, redox potential and human agricultural impact are the key controls of groundwater quality in the Wairau Plain. Hierarchical Cluster Analysis revealed distinct hydrochemical water quality groups in the Wairau Plain groundwater system. Visualisation of the results of the multivariate statistical analyses and distribution of groundwater nitrate concentrations in the context of aquifer lithology highlighted the link between groundwater chemistry and the lithology of host aquifers. The methodology followed in this study can be applied in a variety of hydrogeological settings to synthesise geological, hydrogeological and hydrochemical data and present them in a format readily understood by a wide range of stakeholders. This enables a more efficient communication of the results of scientific studies to the wider community.
Resumo:
There has been substantial interest within the Australian sugar industry in product diversification as a means to reduce its exposure to fluctuating raw sugar prices and in order to increase its commercial viability. In particular, the industry is looking at fibrous residues from sugarcane harvesting (trash) and from sugarcane milling (bagasse) for cogeneration and the production of biocommodities, as these are complementary to the core process of sugar production. A means of producing surplus residue (biomass) is to process whole sugarcane crop. In this paper, the composition of different juices derived from different harvesting methods, viz. burnt cane with all trash extracted (BE), green cane with half of the trash extracted (GE), and green cane (whole sugarcane crop) with trash unextracted (GU), were investigated and the results and comparison presented. The determination of electrical conductivity, inorganic composition, and organic acids indicate that both GU and GE cane juice contain a higher proportion of soluble inorganic ions and ionisable organic acids, compared to BE cane juice. It is important to note that there are considerably higher levels of Na ions and citric acid, but relatively low P levels in the GU samples. A higher level of reducing sugars was analysed in the GU samples than the BE samples due to the higher proportion of impurities found naturally in sugarcane tops and leaves. The purity of the first expressed juice (FEJ) of GU cane was on average higher than that of FEJ of BE cane. Results also show that GU juices appear to contain higher levels of proteins and polysaccharides, with no significant difference in starch levels.
Resumo:
Serving as a powerful tool for extracting localized variations in non-stationary signals, applications of wavelet transforms (WTs) in traffic engineering have been introduced; however, lacking in some important theoretical fundamentals. In particular, there is little guidance provided on selecting an appropriate WT across potential transport applications. This research described in this paper contributes uniquely to the literature by first describing a numerical experiment to demonstrate the shortcomings of commonly-used data processing techniques in traffic engineering (i.e., averaging, moving averaging, second-order difference, oblique cumulative curve, and short-time Fourier transform). It then mathematically describes WT’s ability to detect singularities in traffic data. Next, selecting a suitable WT for a particular research topic in traffic engineering is discussed in detail by objectively and quantitatively comparing candidate wavelets’ performances using a numerical experiment. Finally, based on several case studies using both loop detector data and vehicle trajectories, it is shown that selecting a suitable wavelet largely depends on the specific research topic, and that the Mexican hat wavelet generally gives a satisfactory performance in detecting singularities in traffic and vehicular data.
Resumo:
The Pomegranate Cycle is a practice-led enquiry consisting of a creative work and an exegesis. This project investigates the potential of self-directed, technologically mediated composition as a means of reconfiguring gender stereotypes within the operatic tradition. This practice confronts two primary stereotypes: the positioning of female performing bodies within narratives of violence and the absence of women from authorial roles that construct and regulate the operatic tradition. The Pomegranate Cycle redresses these stereotypes by presenting a new narrative trajectory of healing for its central character, and by placing the singer inside the role of composer and producer. During the twentieth and early twenty-first century, operatic and classical music institutions have resisted incorporating works of living composers into their repertory. Consequently, the canon’s historic representations of gender remain unchallenged. Historically and contemporarily, men have almost exclusively occupied the roles of composer, conductor, director and critic, and therefore men have regulated the pedagogy, performance practices, repertoire and organisations that sustain classical music. In this landscape, women are singers, and few have the means to challenge the constructions of gender they are asked to reproduce. The Pomegranate Cycle uses recording technologies as the means of driving change because these technologies have already challenged the regulation of the classical tradition by changing people’s modes of accessing, creating and interacting with music. Building on the work of artists including Phillips and van Veen, Robert Ashley and Diamanda Galas, The Pomegranate Cycle seeks to broaden the definition of what opera can be. This work examines the ways in which the operatic tradition can be hybridised with contemporary musical forms such as ambient electronica, glitch, spoken word and concrete sounds as a way of bringing the form into dialogue with contemporary music cultures. The ultilisation of other sound cultures within the context of opera enables women’s voices and stories to be presented in new ways, while also providing a point of friction with opera’s traditional storytelling devices. The Pomegranate Cycle simulates aesthetics associated with Western art music genres by drawing on contemporary recording techniques, virtual instruments and sound-processing plug-ins. Through such simulations, the work disrupts the way virtuosic human craft has been used to generate authenticity and regulate access to the institutions that protect and produce Western art music. The DIY approach to production, recording, composition and performance of The Pomegranate Cycle demonstrates that an opera can be realised by a single person. Access to the broader institutions which regulate the tradition are not necessary. In short, The Pomegranate Cycle establishes that a singer can be more than a voice and a performing body. She can be her own multimedia storyteller. Her audience can be anywhere.
Resumo:
A holistic study of the composition of the basalt groundwaters of the Atherton Tablelands region in Queensland, Australia was undertaken to elucidate possible mechanisms for the evolution of these very low salinity, silica- and bicarbonate-rich groundwaters. It is proposed that aluminosilicate mineral weathering is the major contributing process to the overall composition of the basalt groundwaters. The groundwaters approach equilibrium with respect to the primary minerals with increasing pH and are mostly in equilibrium with the major secondary minerals (kaolinite and smectite), and other secondary phases such as goethite, hematite, and gibbsite, which are common accessory minerals in the Atherton basalts. The mineralogy of the basalt rocks, which has been examined using X-ray diffraction and whole rock geochemistry methods, supports the proposed model for the hydrogeochemical evolution of these groundwaters: precipitation + CO 2 (atmospheric + soil) + pyroxene + feldspars + olivine yields H 4SiO 4, HCO 3 -, Mg 2+, Na +, Ca 2+ + kaolinite and smectite clays + amorphous or crystalline silica + accessory minerals (hematite, goethite, gibbsite, carbonates, zeolites, and pyrite). The variations in the mineralogical content of these basalts also provide insights into the controls on groundwater storage and movement in this aquifer system. The fresh and weathered vesicular basalts are considered to be important in terms of zones of groundwater occurrence, while the fractures in the massive basalt are important pathways for groundwater movement.
Resumo:
The design-build (DB) system is a popular and effective delivery method of construction projects worldwide. After owners decide to procure their projects through the DB system, they may wish to determine the optimal proportion of design to be provided in the DB request for proposals (RFPs), which serve as solicitations for design-builders and describe the scope of work. However, this presents difficulties to DB owners and there is little, if any, systematic research in this area. This paper reports on an empirical study in the USA entailing both an online questionnaire survey and Delphi survey to identify and evaluate the factors influencing owners’ decisions in determining the proportion of design to include in DB RFPs. Eleven factors are identified, i.e. (1) clarity of project scope; (2) applicability of performance specifications; (3) desire for design innovation; (4) site constraints; (5) availability of competent design-builders; (6) project control requirements; (7) user group involvement level; (8) third party requirements; (9) owner experience with DB; (10) project complexity; and (11) schedule constraints. A statistically significant agreement on the eleven factors was also obtained from the (mainly non-owner) Delphi experts. Although some of the experts hold different opinions on how these factors affect the proportion of design, these findings furnish various stakeholders with a better understanding of the delivery process of DB projects and the appropriate provision of project information in DB RFPs. As the result is mainly industry opinion concerning the optimal proportion of design, in addition and for completeness, future studies should be conducted to obtain a big picture of the optimal proportion of design by means of seeking owners’ inputs.
Resumo:
Background Zambia is a sub-Saharan country with one of the highest prevalence rates of HIV, currently estimated at 14%. Poor nutritional status due to both protein-energy and micronutrient malnutrition has worsened this situation. In an attempt to address this combined problem, the government has instigated a number of strategies, including the provision of antiretroviral (ARV) treatment coupled with the promotion of good nutrition. High-energy protein supplement (HEPS) is particularly promoted; however, the impact of this food supplement on the nutritional status of people living with HIV/AIDS (PLHA) beyond weight gain has not been assessed. Techniques for the assessment of nutritional status utilising objective measures of body composition are not commonly available in Zambia. The aim of this study is therefore to assess the impact of a food supplement on nutritional status using a comprehensive anthropometric protocol including measures of skinfold thickness and circumferences, plus the criterion deuterium dilution technique to assess total body water (TBW) and derive fat-free mass (FFM) and fat mass (FM). Methods/Design This community-based controlled and longitudinal study aims to recruit 200 HIV-infected females commencing ARV treatment at two clinics in Lusaka, Zambia. Data will be collected at four time points: baseline, 4-month, 8-month and 12-month follow-up visits. Outcome measures to be assessed include body height and weight, body mass index (BMI), body composition, CD4, viral load and micronutrient status. Discussion This protocol describes a study that will provide a longitudinal assessment of the impact of a food supplement on the nutritional status of HIV-infected females initiating ARVs using a range of anthropometric and body composition assessment techniques.