929 resultados para Optimal Linear Control
Resumo:
Optimal feedback control postulates that feedback responses depend on the task relevance of any perturbations. We test this prediction in a bimanual task, conceptually similar to balancing a laden tray, in which each hand could be perturbed up or down. Single-limb mechanical perturbations produced long-latency reflex responses ("rapid motor responses") in the contralateral limb of appropriate direction and magnitude to maintain the tray horizontal. During bimanual perturbations, rapid motor responses modulated appropriately depending on the extent to which perturbations affected tray orientation. Specifically, despite receiving the same mechanical perturbation causing muscle stretch, the strongest responses were produced when the contralateral arm was perturbed in the opposite direction (large tray tilt) rather than in the same direction or not perturbed at all. Rapid responses from shortening extensors depended on a nonlinear summation of the sensory information from the arms, with the response to a bimanual same-direction perturbation (orientation maintained) being less than the sum of the component unimanual perturbations (task relevant). We conclude that task-dependent tuning of reflexes can be modulated online within a single trial based on a complex interaction across the arms.
Resumo:
Recent theoretical frameworks such as optimal feedback control suggest that feedback gains should modulate throughout a movement and be tuned to task demands. Here we measured the visuomotor feedback gain throughout the course of movements made to "near" or "far" targets in human subjects. The visuomotor gain showed a systematic modulation over the time course of the reach, with the gain peaking at the middle of the movement and dropping rapidly as the target is approached. This modulation depends primarily on the proportion of the movement remaining, rather than hand position, suggesting that the modulation is sensitive to task demands. Model-predictive control suggests that the gains should be continuously recomputed throughout a movement. To test this, we investigated whether feedback gains update when the task goal is altered during a movement, that is when the target of the reach jumped. We measured the visuomotor gain either simultaneously with the jump or 100 ms after the jump. The visuomotor gain nonspecifically reduced for all target jumps when measured synchronously with the jump. However, the visuomotor gain 100 ms later showed an appropriate modulation for the revised task goal by increasing for jumps that increased the distance to the target and reducing for jumps that decreased the distance. We conclude that visuomotor feedback gain shows a temporal evolution related to task demands and that this evolution can be flexibly recomputed within 100 ms to accommodate online modifications to task goals.
Resumo:
The 24-mer DNA aptamer of Harada and Frankel ( Harada, K.; Frankel, A. D. EMBO J. 1995, 14, 5798-5811) that binds L-argininamide (L-Arm) was studied by electrospray ionization Fourier transform mass spectrometry (ESI-FTMS). This DNA folds into a stem and loop such that the loop is able to engulf L-Arm. As controls, two derivatives of the same base composition, one with the same stem but a scrambled loop and the other with no ability to form a secondary structure, were studied. The two DNAs that could fold into stem-loop structures showed a more negatively charged distribution of ions than the linear control. This tendency was preserved in the presence of ligand; complexes expected to have more secondary structure had ions with more negative charges. Distinct species corresponding to no, one, and two bound L-Arm molecules were observed for each DNA. The fractional peak intensities were fit to a straightforward binding model and binding constants were obtained. Thus, ESI-FTMS can provide both qualitative and quantitative data regarding the structure of DNA and its interactions with noncovalent ligands.
Resumo:
论文以国家科技部超大规模集成电路制造装备重大专项课题“12英寸硅片智能机械手关键技术与样机研制”为背景,进行了洁净机器人控制系统下层的性能最优控制方法的研究和上层的时间最优轨迹规划方法的研究。 论文从洁净机器人的结构出发,在利用动能公式分析得到大气手(洁净机器人的手臂)转动惯量计算公式的基础上,通过仿真表明了运动中大气手转动惯量随位置变化的幅度较大、对控制系统性能的影响不能忽视;然后从辨识得到的交流永磁同步伺服电机的数学模型出发,提出了一种PI加前馈参数整定的控制方法,并仿真和实验验证了这种控制方法对消除转动惯量变化的影响、提高控制系统动态性能的有效性和简单可行性。针对洁净机器人快速、高效的运动要求,在分析大气手运动约束条件的基础上,提出了变加速度的时间最优轨迹规划方法,并采用实验的方法验证了这种规划方法相对梯形速度曲线规划在时间上的优越性。 论文理论与实际相结合,提出了消除转动惯量变化的控制方法和时间最优轨迹规划方法,为开发出性能优越的洁净机器人作出了一定的贡献。另外,论文还编写了系统辨识程序和上位机测试软件,方便了其它控制算法的研究应用。
Resumo:
为工业机器人提出了一种最优学习控制法。这种控制法用加速度误差校正驱动器运动。并提出了一种基于几何级数的极限条件估计学习控制过程收敛条件的理论方法。所提出学习控制法的有效性通过PUMA562机器人的计算机仿真结果得到了证实。
Resumo:
The task in text retrieval is to find the subset of a collection of documents relevant to a user's information request, usually expressed as a set of words. Classically, documents and queries are represented as vectors of word counts. In its simplest form, relevance is defined to be the dot product between a document and a query vector--a measure of the number of common terms. A central difficulty in text retrieval is that the presence or absence of a word is not sufficient to determine relevance to a query. Linear dimensionality reduction has been proposed as a technique for extracting underlying structure from the document collection. In some domains (such as vision) dimensionality reduction reduces computational complexity. In text retrieval it is more often used to improve retrieval performance. We propose an alternative and novel technique that produces sparse representations constructed from sets of highly-related words. Documents and queries are represented by their distance to these sets. and relevance is measured by the number of common clusters. This technique significantly improves retrieval performance, is efficient to compute and shares properties with the optimal linear projection operator and the independent components of documents.
Resumo:
This work models the competitive behaviour of individuals who maximize their own utility managing their network of connections with other individuals. Utility is taken as a synonym of reputation in this model. Each agent has to decide between two variables: the quality of connections and the number of connections. Hence, the reputation of an individual is a function of the number and the quality of connections within the network. On the other hand, individuals incur in a cost when they improve their network of contacts. The initial value of the quality and number of connections of each individual is distributed according to an initial (given) distribution. The competition occurs over continuous time and among a continuum of agents. A mean field game approach is adopted to solve the model, leading to an optimal trajectory for the number and quality of connections for each individual.
Resumo:
This study sets out to find the best calving pattern for small-scale dairy systems in Michoacan State, central Mexico. Two models were built. First, a linear programming model was constructed to optimize calving pattern and herd structure according to metabolizable energy availability. Second, a Markov chain model was built to investigate three reproductive scenarios (good, average and poor) in order to suggest factors that maintain the calving pattern given by the linear programming model. Though it was not possible to maintain the optimal linear programming pattern, the Markov chain model suggested adopting different reproduction strategies according to period of the year that the cow is expected to calve. Comparing different scenarios, the Markov model indicated the effect of calving interval on calving pattern and herd structure.
Resumo:
Aircraft systems are highly nonlinear and time varying. High-performance aircraft at high angles of incidence experience undesired coupling of the lateral and longitudinal variables, resulting in departure from normal controlled flight. The aim of this work is to construct a robust closed-loop control that optimally extends the stable and decoupled flight envelope. For the study of these systems nonlinear analysis methods are needed. Previously, bifurcation techniques have been used mainly to analyze open-loop nonlinear aircraft models and investigate control effects on dynamic behavior. In this work linear feedback control designs calculated by eigenstructure assignment methods are investigated for a simple aircraft model at a fixed flight condition. Bifurcation analysis in conjunction with linear control design methods is shown to aid control law design for the nonlinear system.
Resumo:
Variational data assimilation in continuous time is revisited. The central techniques applied in this paper are in part adopted from the theory of optimal nonlinear control. Alternatively, the investigated approach can be considered as a continuous time generalization of what is known as weakly constrained four-dimensional variational assimilation (4D-Var) in the geosciences. The technique allows to assimilate trajectories in the case of partial observations and in the presence of model error. Several mathematical aspects of the approach are studied. Computationally, it amounts to solving a two-point boundary value problem. For imperfect models, the trade-off between small dynamical error (i.e. the trajectory obeys the model dynamics) and small observational error (i.e. the trajectory closely follows the observations) is investigated. This trade-off turns out to be trivial if the model is perfect. However, even in this situation, allowing for minute deviations from the perfect model is shown to have positive effects, namely to regularize the problem. The presented formalism is dynamical in character. No statistical assumptions on dynamical or observational noise are imposed.
Resumo:
Mixed models may be defined with or without reference to sampling, and can be used to predict realized random effects, as when estimating the latent values of study subjects measured with response error. When the model is specified without reference to sampling, a simple mixed model includes two random variables, one stemming from an exchangeable distribution of latent values of study subjects and the other, from the study subjects` response error distributions. Positive probabilities are assigned to both potentially realizable responses and artificial responses that are not potentially realizable, resulting in artificial latent values. In contrast, finite population mixed models represent the two-stage process of sampling subjects and measuring their responses, where positive probabilities are only assigned to potentially realizable responses. A comparison of the estimators over the same potentially realizable responses indicates that the optimal linear mixed model estimator (the usual best linear unbiased predictor, BLUP) is often (but not always) more accurate than the comparable finite population mixed model estimator (the FPMM BLUP). We examine a simple example and provide the basis for a broader discussion of the role of conditioning, sampling, and model assumptions in developing inference.
Resumo:
In this work a modification on ANFIS (Adaptive Network Based Fuzzy Inference System) structure is proposed to find a systematic method for nonlinear plants, with large operational range, identification and control, using linear local systems: models and controllers. This method is based on multiple model approach. This way, linear local models are obtained and then those models are combined by the proposed neurofuzzy structure. A metric that allows a satisfactory combination of those models is obtained after the structure training. It results on plant s global identification. A controller is projected for each local model. The global control is obtained by mixing local controllers signals. This is done by the modified ANFIS. The modification on ANFIS architecture allows the two neurofuzzy structures knowledge sharing. So the same metric obtained to combine models can be used to combine controllers. Two cases study are used to validate the new ANFIS structure. The knowledge sharing is evaluated in the second case study. It shows that just one modified ANFIS structure is necessary to combine linear models to identify, a nonlinear plant, and combine linear controllers to control this plant. The proposed method allows the usage of any identification and control techniques for local models and local controllers obtaining. It also reduces the complexity of ANFIS usage for identification and control. This work has prioritized simpler techniques for the identification and control systems to simplify the use of the method
Resumo:
The development of non-linear controllers gained space in the theoretical ambit and of practical applications on the moment that the arising of digital computers enabled the implementation of these methodologies. In comparison with the linear controllers more utilized, the non -linear controllers present the advantage of not requiring the linearity of the system to determine the parameters of control, which permits a more efficient control especially when the system presents a high level of non-linearity. Another additional advantage is the reduction of costs, since to obtain the efficient control through linear controllers it is necessary the utilization of sensors and more refined actuators than when it is utilized a non-linear controller. Among the non-linear theories of control, the method of control by gliding ways is detached for being a method that presents more robustness, before uncertainties. It is already confirmed that the adoption of compensation on the region of residual error permits to improve better the performance of these controllers. So, in this work it is described the development of a non-linear controller that looks for an association of strategy of control by gliding ways, with the fuzzy compensation technique. Through the implementation of some strategies of fuzzy compensation, it was searched the one which provided the biggest efficiency before a system with high level of nonlinearities and uncertainties. The electrohydraulic actuator was utilized as an example of research, and the results appoint to two configurations of compensation that permit a bigger reduction of the residual error
Resumo:
In most cases, the cost of a control system increases based on its complexity. Proportional (P) controller is the simplest and most intuitive structure for the implementation of linear control systems. The difficulty to find the stability range of feedback systems with P controllers, using the Routh-Hurwitz criterion, increases with the order of the plant. For high order plants, the stability range cannot be easily obtained from the investigation of the coefficient signs in the first column of the Routh's array. A direct method for the determination of the stability range is presented. The method is easy to understand, to compute, and to offer the students a better comprehension on this subject. A program in MATLAB language, based on the proposed method, design examples, and class assessments, is provided in order to help the pedagogical issues. The method and the program enable the user to specify a decay rate and also extend to proportional-integral (PI), proportional-derivative (PD), and proportional-integral-derivative (PID) controllers.