765 resultados para Optical dispersion


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on a comprehensive theoretical optical orthogonal frequency division multiplexing (OOFDM) system model rigorously verified by comparing numerical results with end-to-end real-time experimental measurements at 11.25Gb/s, detailed explorations are undertaken, for the first time, of the impacts of various physical factors on the OOFDM system performance over directly modulated DFB laser (DML)-based, intensity modulation and direct detection (IMDD), single-mode fibre (SMF) systems without in-line optical amplification and chromatic dispersion compensation. It is shown that the low extinction ratio (ER) of the DML modulated OOFDM signal is the predominant factor limiting the maximum achievable optical power budget, and the subcarrier intermixing effect associated with square-law photon detection in the receiver reduces the optical power budget by at least 1dB. Results also indicate that, immediately after the DML in the transmitter, the insertion of a 0.02nm bandwidth optical Gaussian bandpass filter with a 0.01nm wavelength offset with respect to the optical carrier wavelength can enhance the OOFDM signal ER by approximately 1.24dB, thus resulting in a 7dB optical power budget improvement at a total channel BER of 1 × 10(-3).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

7.5Gb/s real-time end-to-end optical OFDM (OOFDM) transceivers incorporating variable power loading on each individual subcarrier are demonstrated experimentally, for the first time, using a live-optimized RSOA intensity modulator having a modulation bandwidth as narrow as 1GHz. Colourless real-time 16-QAM-encoded OOFDM signal transmission at 7.5Gb/s over 25km SSMF is achieved across the C-band in simple IMDD systems without in-line optical amplification and dispersion compensation. Copyright © 2010 The authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detailed investigations of the effectiveness of three widely adopted optical orthogonal frequency division multiplexing (OOFDM) adaptive loading algorithms, including power loading (PL), bit loading (BL), and bit-and-power loading (BPL), are undertaken, over < 100km single-mode fibre (SMF) system without incorporating inline optical amplification and chromatic dispersion (CD) compensation. It is shown that the BPL (PL) algorithm always offers the best (worst) transmission performance. The absolute transmission capacity differences between these algorithms are independent of transmission distance and launched optical power. Moreover, it is shown that in comparison with the most sophisticated BPL algorithm, the simplest PL algorithm is effective in escalating the OOFDM SMF links performance to its maximum potential. On the other hand, when employing a large number of subcarriers and a high digital-to-analogue DAC)/analogue-to-digital (ADC) sampling rate, the sophisticated BPL algorithm has to be adopted. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detailed numerical investigations are undertaken of wavelength reused bidirectional transmission of adaptively modulated optical OFDM (AMOOFDM) signals over a single SMF in a WDM-PON incorporating a SOA intensity modulator and a RSOA intensity modulator in the OLT and ONU, respectively. A comprehensive theoretical model describing the performance of such network scenarios is, for the first time, developed, taking into account dynamic optical characteristics of SOA and RSOA intensity modulators as well as the effects of Rayleigh backscattering (RB) and residual downstream signal-induced crosstalk. The developed model is rigorously verified experimentally in RSOA-based real-time end-to-end OOFDM systems at 7.5Gb/s. It is shown that the RB noise and crosstalk effects are the dominant factors limiting the maximum achievable downstream and upstream transmission performance. Under optimum SOA and RSOA operating conditions as well as practical downstream and upstream optical launch powers, 10Gb/s downstream and 6Gb/s upstream over 40km SMF transmissions of conventional double sideband AMOOFDM signals are feasible without utilizing inline optical amplification and chromatic dispersion compensation. In particular, the transmission performance can be improved to 23Gb/s downstream and 8Gb/s upstream over 40 km SMFs when single sideband subcarrier modulation is adopted in the downstream systems. Copyright © 2010 The authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three novel designs of adaptively modulated optical orthogonal frequency division multiplexing modems using subcarrier modulation (AMOOFDM-SCM) are proposed, for the first time, each of which requires a single IFFT/FFT operation. These designs has a number of salient advantages including a significantly simplified modem configuration due to the involvement of a single IFFT/FFT operation, input/output reconfigurability, dynamic bandwidth allocation capability, cost reduction and system flexibility and performance robustness to variations in transmission link conditions. Investigations show that these three modems are capable of supporting >60Gb/s AMOOFDM-SCM signal transmission over 20km, 40km and 60km single-mode fibre-based intensity modulation and direct detection transmission links without optical amplification and chromatic dispersion compensation. Copyright © 2010 The authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transmission performance of multi-channel adaptively modulated optical OFDM (AMOOFDM) signals is numerically investigated, for the first time, in optical amplification- and chromatic dispersion compensation-free, intensity-modulation and direct-detection systems incorporating directly modulated DFB lasers (DMLs). It is shown that adaptive modulation not only reduces significantly the nonlinear WDM impairments induced by the effects of cross-phase modulation and four-wave mixing, but also compensates effectively for the DML-induced frequency chirp effect. In comparison with identical modulation, adaptive modulation improves the maximum achievable signal transmission capacity of a central channel by a factor of 1.3 and 3.6 for 40km and 80km SMFs, respectively, with corresponding dynamic input optical power ranges being extended by approximately 5dB. In addition, adaptive modulation also enables cross-channel complementary modulation format mapping, leading to an improved transmission capacity of the entire WDM system. Copyright © 2010 The authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 7.5-Gb/s real-time end-to-end optical orthogonal frequency-division- multiplexing (OOFDM) transceivers incorporating variable power loading on each individual subcarrier are demonstrated experimentally using a live-optimized reflective semiconductor optical amplifier intensity modulator having a modulation bandwidth as narrow as 1 GHz. Real-time OOFDM signal transmission at 7.5 Gb/s over 25-km standard single-mode fiber is achieved across the $C$-band in simple intensity modulation and direct detection systems without in-line optical amplification and dispersion compensation. © 2006 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Each mode of a multimode fibre is excited using binary phase patterns on a Spatial Light Modulator and verified by observation of the near-field leaving the fibre and analysis of the step response. © 2011 OSA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulse generation from a mode-locked single-section 1.55μm quantum-dash FP laser is demonstrated under continuous-wave operation. A 270GHz, 580fs pulse train is achieved by applying frequency multiplication using fiber dispersion. ©2009 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transmission properties of data amplitude modulation (AM) and frequency modulation (FM) in radio-over-fiber (RoF) system are studied numerically. The influences of fiber dispersion and nonlinearity on different microwave modulation schemes, including double side band (DSB), single side band (SSB) and optical carrier suppression (OCS), are investigated and compared. The power penalties at the base station (BS) and the eye opening penalties of the recovered data at the end users are both calculated and analyzed. Numerical simulation results reveal that the power penalty of FM can be drastically decreased due to the larger modulation depth it can achieve than that of AM. The local spectrum broadening around subcarrier microwave frequency of AM due to fiber nonlinearity can also be eliminated with FM. It is demonstrated for the first time that the eye openings of the FM recovered data can be controlled by its modulation depths and the coding formats. Negative voltage encoding format was used to further decrease the RF frequency thus increase the fluctuation period considering their inverse relationship.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We experimentally demonstrate a small-size and high-speed silicon optical switch based on the free carrier plasma dispersion in silicon. Using an embedded racetrack resonator with a quality factor of 7400, the optical switch shows an extinction ratio exceeding 13 dB with a footprint of only 2.2 x 10(-3) mm(2). Moreover, a novel pre-emphasis technique is introduced to improve the optical response performance and the rise and the fall times are reduced down to 0.24 ns and 0.42 ns respectively, which are 25% and 44% lower than those without the pre-emphasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An optical modulator is designed and fabricated based on a Si0.75Ge0.25/Si/Si0.5Ge0.5 asymmetrical superlattice structure. The device comprises a p-i-n diode made on the asymmetrical superlattice integrated with a 920-mu m-long Fabry-Perot (F-P) cavity. Parameters of the rib waveguide are designed to satisfy only the fundamental-TE mode transmission. Here, 65 and 40-pm red shifts of the peak resonant were measured under the applied bias of 2.5 and -32.0 V, respectively. The analysis shows that, besides the thermal-optical and plasma dispersion effects, the Pockels effect also contributes to such a peak shift. The corresponding calculated effective Pockels coefficient is about 0.158 pm/V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the modified dual core structure, three kinds of special photonic crystal fibers are presented, which are extremely large negative dispersion, super-broad bond, and large area made field dispersion-compensating photonic crystal fibers (DCPCF). For extremely large negative dispersion DCPCF, the peak of negative dispersion reaches -5.9 x 10(4) ps/(mn km). Super-broad bond DCPCF has broadband large negative dispersion and the dispersion value varies linearly from -380 ps/(nm km) to -420 ps/(nm km) in the C band. The designed large area made field DCPCF has a peak dispersion of -1203 ps/(nm km) with the inner core mode area of 47 mu m(2) and outer core mode area of 835 mu m(2). Furthermore, for the large area mode field DCPCF, the experimental result is also obtained. (C) 2008 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Undoped and Al-, Ga-, and In-doped Bi4Ti3O12 thin films were prepared on fused quartz substrates by chemical solution deposition. Their microstructures and optical properties were investigated by x-ray diffraction and UV-visible-NIR spectrophotometer, respectively. The optical band-gap energies, Urbach energies, and linear refractive indices of all the films are derived from the transmittance spectrum. Following the single oscillator model, the dispersion parameters such as the average oscillator energy (E-0) and dispersion energy (E-d) are achieved. The energy band gap and refractive indices are found to decrease with introducing the dopants of Al, Ga, and In, which is useful for the band-gap engineering and optical waveguide devices. The refractive index dispersion parameter (E-0/S-0) increases and the chemical bonding quantity (beta) decreases in all the films compared with those of bulk. It is supposed to be caused by the nanosize grains in films. (c) 2009 American Institute of Physics. [DOI 10.1063/1.3138813]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bi4Ti3O12 (BTO) and Bi3.25In0.75Ti3O12 (BTO:In) thin films were prepared on fused quartz and LaNiO3/Si (LNO) substrates by chemical solution deposition (CSD). Their microstructures, ferroelectric and optical properties were investigated by X-ray diffraction, scanning electron microscope, ferroelectric tester and UV-visible-NIR spectrophotometer, respectively. The optical band-gaps of the films were found to be 3.64 and 3.45 eV for the BTO and BTO:In films, respectively. Optical constants (refractive indexes and extinction coefficients) were determined from the optical transmittance spectra using the envelope method. Following the single electronic oscillator model, the single oscillator energy E-0, the dispersion energy E-d, the average interband oscillator wavelength lambda(0), the average oscillator strength S-0, the refractive index dispersion parameter (E-0/S-0), the chemical bonding quantity beta, and the long wavelength refractive index n(infinity) were obtained and analyzed. Both the refractive index and extinction coefficient of the BTO:In films are smaller than those of the BTO films. Furthermore, the refractive index dispersion parameter (E-0/S-0) increases and the chemical bonding quantity beta decreases in the BTO and BTO:In films compared with those of bulk. (C) 2007 Published by Elsevier B.V.