930 resultados para Optic nerve.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: /st> Retrobulbar anaesthesia allows eye surgery in awake patients. Severe complications of the blind techniques are reported. Ultrasound-guided needle introduction and direct visualization of the spread of local anaesthetic may improve quality and safety of retrobulbar anaesthesia. Therefore, we developed a new ultrasound-guided technique using human cadavers. METHODS: /st> In total, 20 blocks on both sides in 10 embalmed human cadavers were performed. Using a small curved array transducer and a long-axis approach, a 22 G short bevel needle was introduced under ultrasound guidance lateral and caudal of the eyeball until the needle tip was seen 2 mm away from the optic nerve. At this point, 2 ml of contrast dye as a substitute for local anaesthetic was injected. Immediately after the injection, the spread of the contrast dye was documented by means of CT scans performed in each cadaver. RESULTS: /st> The CT scans showed the distribution of the contrast dye in the muscle cone and behind the posterior sclera in all but one case. No contrast dye was found inside the optic nerve or inside the eyeball. In one case, there could be an additional trace of contrast dye behind the orbita. CONCLUSIONS: /st> Our new ultrasound-guided technique has the potential to improve safety and efficacy of the procedure by direct visualization of the needle placement and the distribution of the injected fluid. Furthermore, the precise injection near the optic nerve could lead to a reduction of the amount of the local anaesthetic needed with fewer related complications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Increased intracranial pressure usually leads to bilateral disc swelling. HISTORY AND SIGNS: A patient presented with recurrent visual disturbances following trabeculectomy in the right eye. Intraocular pressure in the right and left eye were 11 and 24 mmHg, respectively. The optic nerve head was swollen in the right, but not in the left eye. Lumbar puncture showed an opening pressure of 32 cmH (2)O. Magnetic resonance imaging, neurological examination and composition of cerebrospinal fluid were normal. According to the modified Dandy criteria, an idiopathic intracranial hypertension was diagnosed. THERAPY AND OUTCOME: Treatment with acetazolamide led to resolution of papilledema in the right eye within six months. CONCLUSION: The intracranial-intraocular pressure gradient in the right eye was markedly higher as compared to that of the left eye. We suggest that this pressure gradient induced the collapse of axoplasmatic transport at the lamina cribrosa with subsequent disc swelling. As no significant pressure gradient was present in the left eye, the optic disc remained normal. Based on analogous calculations in three additional published cases of unilateral papilledema we thus suggest that intraocular pressure should be taken into account when evaluating patients with papilledema.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Small bistratified cells (SBCs) in the primate retina carry a major blue-yellow opponent signal to the brain. We found that SBCs also carry signals from rod photoreceptors, with the same sign as S cone input. SBCs exhibited robust responses under low scotopic conditions. Physiological and anatomical experiments indicated that this rod input arose from the AII amacrine cell-mediated rod pathway. Rod and cone signals were both present in SBCs at mesopic light levels. These findings have three implications. First, more retinal circuits may multiplex rod and cone signals than were previously thought to, efficiently exploiting the limited number of optic nerve fibers. Second, signals from AII amacrine cells may diverge to most or all of the approximately 20 retinal ganglion cell types in the peripheral primate retina. Third, rod input to SBCs may be the substrate for behavioral biases toward perception of blue at mesopic light levels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glaucoma is a collection of diseases characterized by multifactorial progressive changes leading to visual field loss and optic neuropathy most frequently due to elevated intraocular pressure (IOP). The goal of treatment is the lowering of the IOP to prevent additional optic nerve damage. Treatment usually begins with topical pharmacological agents as monotherapy, progresses to combination therapy with agents from up to 4 different classes of IOP-lowering medications, and then proceeds to laser or incisional surgical modalities for refractory cases. The fixed combination therapy with the carbonic anhydrase inhibitor dorzolamide hydrochloride 2% and the beta blocker timolol maleate 0.5% is now available in a generic formulation for the treatment of patients who have not responded sufficiently to monotherapy with beta adrenergic blockers. In pre- and postmarketing clinical studies, the fixed combination dorzolamide-timolol has been shown to be safe and efficacious, and well tolerated by patients. The fixed combination dorzolamide-timolol is convenient for patients, reduces their dosing regimen with the goal of increasing their compliance, reduces the effects of "washout" when instilling multiple drops, and reduces the preservative burden by reducing the number of drops administered per day.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: To characterize cyan fluorescent protein (CFP) expression in the retina of the thy1-CFP (B6.Cg-Tg(Thy1-CFP)23Jrs/J) transgenic mouse line. METHODS: CFP expression was characterized using morphometric methods and immunohistochemistry with antibodies to neurofilament light (NF-L), neuronal nuclei (NeuN), POU-domain protein (Brn3a) and calretinin, which immunolabel ganglion cells, and syntaxin 1 (HPC-1), glutamate decarboxylase 67 (GAD(67)), GABA plasma membrane transporter-1 (GAT-1), and choline acetyltransferase (ChAT), which immunolabel amacrine cells. RESULTS: CFP was extensively expressed in the inner retina, primarily in the inner plexiform layer (IPL), ganglion cell layer (GCL), nerve fiber layer, and optic nerve. CFP fluorescent cell bodies were in all retinal regions and their processes ramified in all laminae of the IPL. Some small, weakly CFP fluorescent somata were in the inner nuclear layer (INL). CFP-containing somata in the GCL ranged from 6 to 20 microm in diameter, and they had a density of 2636+/-347 cells/mm2 at 1.5 mm from the optic nerve head. Immunohistochemical studies demonstrated colocalization of CFP with the ganglion cell markers NF-L, NeuN, Brn3a, and calretinin. Immunohistochemistry with antibodies to HPC-1, GAD(67), GAT-1, and ChAT indicated that the small, weakly fluorescent CFP cells in the INL and GCL were cholinergic amacrine cells. CONCLUSIONS: The total number and density of CFP-fluorescent cells in the GCL were within the range of previous estimates of the total number of ganglion cells in the C57BL/6J line. Together these findings suggest that most ganglion cells in the thy1-CFP mouse line 23 express CFP. In conclusion, the thy1-CFP mouse line is highly useful for studies requiring the identification of ganglion cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: Proper delineation of ocular anatomy in 3D imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic Resonance Imaging (MRI) is nowadays utilized in clinical practice for the diagnosis confirmation and treatment planning of retinoblastoma in infants, where it serves as a source of information, complementary to the Fundus or Ultrasound imaging. Here we present a framework to fully automatically segment the eye anatomy in the MRI based on 3D Active Shape Models (ASM), we validate the results and present a proof of concept to automatically segment pathological eyes. Material and Methods: Manual and automatic segmentation were performed on 24 images of healthy children eyes (3.29±2.15 years). Imaging was performed using a 3T MRI scanner. The ASM comprises the lens, the vitreous humor, the sclera and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens and the optic nerve, then aligning the model and fitting it to the patient. We validated our segmentation method using a leave-one-out cross validation. The segmentation results were evaluated by measuring the overlap using the Dice Similarity Coefficient (DSC) and the mean distance error. Results: We obtained a DSC of 94.90±2.12% for the sclera and the cornea, 94.72±1.89% for the vitreous humor and 85.16±4.91% for the lens. The mean distance error was 0.26±0.09mm. The entire process took 14s on average per eye. Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor and the lens using MRI. We additionally present a proof of concept for fully automatically segmenting pathological eyes. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose Ophthalmologists are confronted with a set of different image modalities to diagnose eye tumors e.g., fundus photography, CT and MRI. However, these images are often complementary and represent pathologies differently. Some aspects of tumors can only be seen in a particular modality. A fusion of modalities would improve the contextual information for diagnosis. The presented work attempts to register color fundus photography with MRI volumes. This would complement the low resolution 3D information in the MRI with high resolution 2D fundus images. Methods MRI volumes were acquired from 12 infants under the age of 5 with unilateral retinoblastoma. The contrast-enhanced T1-FLAIR sequence was performed with an isotropic resolution of less than 0.5mm. Fundus images were acquired with a RetCam camera. For healthy eyes, two landmarks were used: the optic disk and the fovea. The eyes were detected and extracted from the MRI volume using a 3D adaption of the Fast Radial Symmetry Transform (FRST). The cropped volume was automatically segmented using the Split Bregman algorithm. The optic nerve was enhanced by a Frangi vessel filter. By intersection the nerve with the retina the optic disk was found. The fovea position was estimated by constraining the position with the angle between the optic and the visual axis as well as the distance from the optic disk. The optical axis was detected automatically by fitting a parable on to the lens surface. On the fundus, the optic disk and the fovea were detected by using the method of Budai et al. Finally, the image was projected on to the segmented surface using the lens position as the camera center. In tumor affected eyes, the manually segmented tumors were used instead of the optic disk and macula for the registration. Results In all of the 12 MRI volumes that were tested the 24 eyes were found correctly, including healthy and pathological cases. In healthy eyes the optic nerve head was found in all of the tested eyes with an error of 1.08 +/- 0.37mm. A successful registration can be seen in figure 1. Conclusions The presented method is a step toward automatic fusion of modalities in ophthalmology. The combination enhances the MRI volume with higher resolution from the color fundus on the retina. Tumor treatment planning is improved by avoiding critical structures and disease progression monitoring is made easier.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE Spontaneous intracranial hypotension (SIH) is most commonly caused by cerebrospinal fluid (CSF) leakage. Therefore, we hypothesised that patients with orthostatic headache (OH) would show decreased optic nerve sheath diameter (ONSD) during changes from supine to upright position. METHODS Transorbital B-mode ultrasound was performed employing a high-frequency transducer for ONSD measurements in the supine and upright positions. Absolute values and changes of ONSD from supine to upright were assessed. Ultrasound was performed in 39 SIH patients, 18 with OH and 21 without OH, and in 39 age-matched control subjects. The control group comprised 20 patients admitted for back surgery without headache or any orthostatic symptoms, and 19 healthy controls. RESULTS In supine position, mean ONSD (±SD) was similar in patients with (5.38±0.91 mm) or without OH (5.48±0.89 mm; p=0.921). However, in upright position, mean ONSD was different between patients with (4.84±0.99 mm) and without OH (5.53±0.99 mm; p=0.044). Furthermore, the change in ONSD from supine to upright position was significantly greater in SIH patients with OH (-0.53±0.34 mm) than in SIH patients without OH (0.05±0.41 mm; p≤0.001) or in control subjects (0.01±0.38 mm; p≤0.001; area under the curve: 0.874 in receiver operating characteristics analysis). CONCLUSIONS Symptomatic patients with SIH showed a significant decrease of ONSD, as assessed by ultrasound, when changing from the supine to the upright position. Ultrasound assessment of the ONSD in two positions may be a novel, non-invasive tool for the diagnosis and follow-up of SIH and for elucidating the pathophysiology of SIH.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Atypical meningiomas are an intermediate grade brain tumour with a recurrence rate of 39-58 %. It is not known whether early adjuvant radiotherapy reduces the risk of tumour recurrence and whether the potential side-effects are justified. An alternative management strategy is to perform active monitoring with magnetic resonance imaging (MRI) and to treat at recurrence. There are no randomised controlled trials comparing these two approaches. METHODS/DESIGN A total of 190 patients will be recruited from neurosurgical/neuro-oncology centres across the United Kingdom, Ireland and mainland Europe. Adult patients undergoing gross total resection of intracranial atypical meningioma are eligible. Patients with multiple meningioma, optic nerve sheath meningioma, previous intracranial tumour, previous cranial radiotherapy and neurofibromatosis will be excluded. Informed consent will be obtained from patients. This is a two-stage trial (both stages will run in parallel): Stage 1 (qualitative study) is designed to maximise patient and clinician acceptability, thereby optimising recruitment and retention. Patients wishing to continue will proceed to randomisation. Stage 2 (randomisation) patients will be randomised to receive either early adjuvant radiotherapy for 6 weeks (60 Gy in 30 fractions) or active monitoring. The primary outcome measure is time to MRI evidence of tumour recurrence (progression-free survival (PFS)). Secondary outcome measures include assessing the toxicity of the radiotherapy, the quality of life, neurocognitive function, time to second line treatment, time to death (overall survival (OS)) and incremental cost per quality-adjusted life year (QALY) gained. DISCUSSION ROAM/EORTC-1308 is the first multi-centre randomised controlled trial designed to determine whether early adjuvant radiotherapy reduces the risk of tumour recurrence following complete surgical resection of atypical meningioma. The results of this study will be used to inform current neurosurgery and neuro-oncology practice worldwide. TRIAL REGISTRATION ISRCTN71502099 on 19 May 2014.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The retina is a specialized neuronal structure that transforms the optical image into electrical signals which are transmitted to the brain via the optic nerve. As part of the strategy to cover a stimulus range as broad as 10 log units, from dim starlight to bright sunlight, retinal circuits are broadly divided into rod and cone pathways, responsible for dark and light-adapted vision, respectively. ^ In this dissertation, confocal microscopy and immunocytochemical methods were combined to study the synaptic connectivity of the rod pathway from the level of individual synapses to whole populations of neurons. The study was focused on synaptic interactions at the rod bipolar terminal. The purpose is to understand the synaptic structure of the dyad synapse made by rod bipolar terminals, including the synaptic components and connections, and their physiological functions in the rod pathway. In addition, some additional components and connections of the rod pathway were also studied in these experiments. The major results can be summarized as following: At the dyad synapse of rod bipolar terminals, three postsynaptic components—processes of All amacrine cells and the varicosities of S1 or S2 amacrine cells express different glutamate receptor subunits, which may underlie the functional diversity of these postsynaptic neurons. A reciprocal feedback system is formed by rod bipolar terminals and S1/S2 amacrine cells. Analysis showed these two wide-field GABA amacrine cells have stereotyped synaptic connections with the appropriate morphology and distribution to perform specific functions. In addition, S1 and S2 cells have different coupling patterns and, in general, there is no coupling between the two types. Besides the classic rod pathway though rod bipolar cells and All amacrine cells, the finding of direct connections between certain types of OFF cone bipolar cells and rods indicates the presence of an alternative rod pathway in the rabbit retina. ^ In summary, this dissertation presents a detailed view of the connection and receptors at rod bipolar terminals. Based on the morphology, distribution and coupling, different functional roles were identified for S1 and S2 amacrine cells. Finally, an alternative to the classic rod pathway was found in the rabbit retina. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deciphering the information that eyes, ears, and other sensory organs transmit to the brain is important for understanding the neural basis of behavior. Recordings from single sensory nerve cells have yielded useful insights, but single neurons generally do not mediate behavior; networks of neurons do. Monitoring the activity of all cells in a neural network of a behaving animal, however, is not yet possible. Taking an alternative approach, we used a realistic cell-based model to compute the ensemble of neural activity generated by one sensory organ, the lateral eye of the horseshoe crab, Limulus polyphemus. We studied how the neural network of this eye encodes natural scenes by presenting to the model movies recorded with a video camera mounted above the eye of an animal that was exploring its underwater habitat. Model predictions were confirmed by simultaneously recording responses from single optic nerve fibers of the same animal. We report here that the eye transmits to the brain robust “neural images” of objects having the size, contrast, and motion of potential mates. The neural code for such objects is not found in ambiguous messages of individual optic nerve fibers but rather in patterns of coherent activity that extend over small ensembles of nerve fibers and are bound together by stimulus motion. Integrative properties of neurons in the first synaptic layer of the brain appear well suited to detecting the patterns of coherent activity. Neural coding by this relatively simple eye helps explain how horseshoe crabs find mates and may lead to a better understanding of how more complex sensory organs process information.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vertebrate eye development begins at the gastrula stage, when a region known as the eye field acquires the capacity to generate retina and lens. Optx2, a homeobox gene of the sine oculis-Six family, is selectively expressed in this early eye field and later in the lens placode and optic vesicle. The distal and ventral portion of the optic vesicle are fated to become the retina and optic nerve, whereas the dorsal portion eventually loses its neural characteristics and activates the synthesis of melanin, forming the retinal pigment epithelium. Optx2 expression is turned off in the future pigment epithelium but remains expressed in the proliferating neuroblasts and differentiating cells of the neural retina. When an Optx2-expressing plasmid is transfected into embryonic or mature chicken pigment epithelial cells, these cells adopt a neuronal morphology and express markers characteristic of developing neural retina and photoreceptors. One explanation of these results is that Optx2 functions as a determinant of retinal precursors and that it has induced the transdifferentiation of pigment epithelium into retinal neurons and photoreceptors. We also have isolated optix, a Drosophila gene that is the closest insect homologue of Optx2 and Six3. Optix is expressed during early development of the fly head and eye primordia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recordings were obtained from the visual system of rats as they cycled normally between waking (W), slow-wave sleep (SWS), and rapid eye movement (REM) sleep. Responses to flashes delivered by a light-emitting diode attached permanently to the skull were recorded through electrodes implanted on the cornea, in the chiasm, and on the cortex. The chiasm response reveals the temporal order in which the activated ganglion cell population exits the eyeball; as reported, this triphasic event is invariably short in latency (5–10 ms) and around 300 ms in duration, called the histogram. Here we describe the differences in the histograms recorded during W, SWS, and REM. SWS histograms are always larger than W histograms, and an REM histogram can resemble either. In other words, the optic nerve response to a given stimulus is labile; its configuration depends on whether the rat is asleep or awake. We link this physiological information with the anatomical fact that the brain dorsal raphe region, which is known to have a sleep regulatory role, sends fibers to the rat retina and receives fibers from it. At the cortical electrode, the visual cortical response amplitudes also vary, being largest during SWS. This well known phenomenon often is explained by changes taking place at the thalamic level. However, in the rat, the labile cortical response covaries with the labile optic nerve response, which suggests the cortical response enhancement during SWS is determined more by what happens in the retina than by what happens in the thalamus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Our group recently demonstrated that autoimmune T cells directed against central nervous system-associated myelin antigens protect neurons from secondary degeneration. We further showed that the synthetic peptide copolymer 1 (Cop-1), known to suppress experimental autoimmune encephalomyelitis, can be safely substituted for the natural myelin antigen in both passive and active immunization for neuroprotection of the injured optic nerve. Here we attempted to determine whether similar immunizations are protective from retinal ganglion cell loss resulting from a direct biochemical insult caused, for example, by glutamate (a major mediator of degeneration in acute and chronic optic nerve insults) and in a rat model of ocular hypertension. Passive immunization with T cells reactive to myelin basic protein or active immunization with myelin oligodendrocyte glycoprotein-derived peptide, although neuroprotective after optic nerve injury, was ineffective against glutamate toxicity in mice and rats. In contrast, the number of surviving retinal ganglion cells per square millimeter in glutamate-injected retinas was significantly larger in mice immunized 10 days previously with Cop-1 emulsified in complete Freund's adjuvant than in mice injected with PBS in the same adjuvant (2,133 ± 270 and 1,329 ± 121, respectively, mean ± SEM; P < 0.02). A similar pattern was observed when mice were immunized on the day of glutamate injection (1,777 ± 101 compared with 1,414 ± 36; P < 0.05), but not when they were immunized 48 h later. These findings suggest that protection from glutamate toxicity requires reinforcement of the immune system by antigens that are different from those associated with myelin. The use of Cop-1 apparently circumvents this antigen specificity barrier. In the rat ocular hypertension model, which simulates glaucoma, immunization with Cop-1 significantly reduced the retinal ganglion cell loss from 27.8% ± 6.8% to 4.3% ± 1.6%, without affecting the intraocular pressure. This study may point the way to a therapy for glaucoma, a neurodegenerative disease of the optic nerve often associated with increased intraocular pressure, as well as for acute and chronic degenerative disorders in which glutamate is a prominent participant.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The visual world is presented to the brain through patterns of action potentials in the population of optic nerve fibers. Single-neuron recordings show that each retinal ganglion cell has a spatially restricted receptive field, a limited integration time, and a characteristic spectral sensitivity. Collectively, these response properties define the visual message conveyed by that neuron's action potentials. Since the size of the optic nerve is strictly constrained, one expects the retina to generate a highly efficient representation of the visual scene. By contrast, the receptive fields of nearby ganglion cells often overlap, suggesting great redundancy among the retinal output signals. Recent multineuron recordings may help resolve this paradox. They reveal concerted firing patterns among ganglion cells, in which small groups of nearby neurons fire synchronously with delays of only a few milliseconds. As there are many more such firing patterns than ganglion cells, such a distributed code might allow the retina to compress a large number of distinct visual messages into a small number of optic nerve fibers. This paper will review the evidence for a distributed coding scheme in the retinal output. The performance limits of such codes are analyzed with simple examples, illustrating that they allow a powerful trade-off between spatial and temporal resolution.