972 resultados para Operational Research
Resumo:
This Thesis aims at building and discussing mathematical models applications focused on Energy problems, both on the thermal and electrical side. The objective is to show how mathematical programming techniques developed within Operational Research can give useful answers in the Energy Sector, how they can provide tools to support decision making processes of Companies operating in the Energy production and distribution and how they can be successfully used to make simulations and sensitivity analyses to better understand the state of the art and convenience of a particular technology by comparing it with the available alternatives. The first part discusses the fundamental mathematical background followed by a comprehensive literature review about mathematical modelling in the Energy Sector. The second part presents mathematical models for the District Heating strategic network design and incremental network design. The objective is the selection of an optimal set of new users to be connected to an existing thermal network, maximizing revenues, minimizing infrastructure and operational costs and taking into account the main technical requirements of the real world application. Results on real and randomly generated benchmark networks are discussed with particular attention to instances characterized by big networks dimensions. The third part is devoted to the development of linear programming models for optimal battery operation in off-grid solar power schemes, with consideration of battery degradation. The key contribution of this work is the inclusion of battery degradation costs in the optimisation models. As available data on relating degradation costs to the nature of charge/discharge cycles are limited, we concentrate on investigating the sensitivity of operational patterns to the degradation cost structure. The objective is to investigate the combination of battery costs and performance at which such systems become economic. We also investigate how the system design should change when battery degradation is taken into account.
Resumo:
The generalized failure rate of a continuous random variable has demonstrable importance in operations management. If the valuation distribution of a product has an increasing generalized failure rate (that is, the distribution is IGFR), then the associated revenue function is unimodal, and when the generalized failure rate is strictly increasing, the global maximum is uniquely specified. The assumption that the distribution is IGFR is thus useful and frequently held in recent pricing, revenue, and supply chain management literature. This note contributes to the IGFR literature in several ways. First, it investigates the prevalence of the IGFR property for the left and right truncations of valuation distributions. Second, we extend the IGFR notion to discrete distributions and contrast it with the continuous distribution case. The note also addresses two errors in the previous IGFR literature. Finally, for future reference, we analyze all common (continuous and discrete) distributions for the prevalence of the IGFR property, and derive and tabulate their generalized failure rates.
Resumo:
This paper deals with scheduling batch (i.e., discontinuous), continuous, and semicontinuous production in process industries (e.g., chemical, pharmaceutical, or metal casting industries) where intermediate storage facilities and renewable resources (processing units and manpower) of limited capacity have to be observed. First, different storage configurations typical of process industries are discussed. Second, a basic scheduling problem covering the three above production modes is presented. Third, (exact and truncated) branch-and-bound methods for the basic scheduling problem and the special case of batch scheduling are proposed and subjected to an experimental performance analysis. The solution approach presented is flexible and in principle simple, and it can (approximately) solve relatively large problem instances with sufficient accuracy.
Resumo:
We study a real-world scheduling problem arising in the context of a rolling ingots production. First we review the production process and discuss peculiarities that have to be observed when scheduling a given set of production orders on the production facilities. We then show how to model this scheduling problem using prescribed time lags between operations, different kinds of resources, and sequence-dependent changeovers. A branch-and-bound solution procedure is presented in the second part. The basic principle is to relax the resource constraints by assuming infinite resource availability. Resulting resource conflicts are then stepwise resolved by introducing precedence relationships among operations competing for the same resources. The algorithm has been implemented as a beam search heuristic enumerating alternative sets of precedence relationships.
Resumo:
Due to the ongoing trend towards increased product variety, fast-moving consumer goods such as food and beverages, pharmaceuticals, and chemicals are typically manufactured through so-called make-and-pack processes. These processes consist of a make stage, a pack stage, and intermediate storage facilities that decouple these two stages. In operations scheduling, complex technological constraints must be considered, e.g., non-identical parallel processing units, sequence-dependent changeovers, batch splitting, no-wait restrictions, material transfer times, minimum storage times, and finite storage capacity. The short-term scheduling problem is to compute a production schedule such that a given demand for products is fulfilled, all technological constraints are met, and the production makespan is minimised. A production schedule typically comprises 500–1500 operations. Due to the problem size and complexity of the technological constraints, the performance of known mixed-integer linear programming (MILP) formulations and heuristic approaches is often insufficient. We present a hybrid method consisting of three phases. First, the set of operations is divided into several subsets. Second, these subsets are iteratively scheduled using a generic and flexible MILP formulation. Third, a novel critical path-based improvement procedure is applied to the resulting schedule. We develop several strategies for the integration of the MILP model into this heuristic framework. Using these strategies, high-quality feasible solutions to large-scale instances can be obtained within reasonable CPU times using standard optimisation software. We have applied the proposed hybrid method to a set of industrial problem instances and found that the method outperforms state-of-the-art methods.
Resumo:
Well-known data mining algorithms rely on inputs in the form of pairwise similarities between objects. For large datasets it is computationally impossible to perform all pairwise comparisons. We therefore propose a novel approach that uses approximate Principal Component Analysis to efficiently identify groups of similar objects. The effectiveness of the approach is demonstrated in the context of binary classification using the supervised normalized cut as a classifier. For large datasets from the UCI repository, the approach significantly improves run times with minimal loss in accuracy.