914 resultados para Ontologies (Information retrieval) -- TFC
Resumo:
Methods for accessing data on the Web have been the focus of active research over the past few years. In this thesis we propose a method for representing Web sites as data sources. We designed a Data Extractor data retrieval solution that allows us to define queries to Web sites and process resulting data sets. Data Extractor is being integrated into the MSemODB heterogeneous database management system. With its help database queries can be distributed over both local and Web data sources within MSemODB framework. Data Extractor treats Web sites as data sources, controlling query execution and data retrieval. It works as an intermediary between the applications and the sites. Data Extractor utilizes a two-fold "custom wrapper" approach for information retrieval. Wrappers for the majority of sites are easily built using a powerful and expressive scripting language, while complex cases are processed using Java-based wrappers that utilize specially designed library of data retrieval, parsing and Web access routines. In addition to wrapper development we thoroughly investigate issues associated with Web site selection, analysis and processing. Data Extractor is designed to act as a data retrieval server, as well as an embedded data retrieval solution. We also use it to create mobile agents that are shipped over the Internet to the client's computer to perform data retrieval on behalf of the user. This approach allows Data Extractor to distribute and scale well. This study confirms feasibility of building custom wrappers for Web sites. This approach provides accuracy of data retrieval, and power and flexibility in handling of complex cases.
Representing clinical documents to support automatic retrieval of evidence from the Cochrane Library
Resumo:
The overall aim of our research is to develop a clinical information retrieval system that retrieves systematic reviews and underlying clinical studies from the Cochrane Library to support physician decision making. We believe that in order to accomplish this goal we need to develop a mechanism for effectively representing documents that will be retrieved by the application. Therefore, as a first step in developing the retrieval application we have developed a methodology that semi-automatically generates high quality indices and applies them as descriptors to documents from The Cochrane Library. In this paper we present a description and implementation of the automatic indexing methodology and an evaluation that demonstrates that enhanced document representation results in the retrieval of relevant documents for clinical queries. We argue that the evaluation of information retrieval applications should also include an evaluation of the quality of the representation of documents that may be retrieved. ©2010 IEEE.
Resumo:
The information architecture supports information retrieval by users in Web environment. The design should be center in the information user, favoring usability. The Faculty of Industrial Engineering and Tourism of the Universidad Central "Marta Abreu" de Las Villas, lacks a site that enhances the disclosure of information to its members. Are presented as objectives of the study: 1) conduct a user survey to identify information needs of users, 2) establish guidelines for information architecture for the institution focused on users, 3) designing the information architecture for the institution and 4) designed to evaluate the proposal. Are presented as objectives of the study: 1) to realize a user study to identify the information needs of users, 2) establish guidelines for information architecture for the institution focused on users, 3) to design the information architecture for the institution and 4) to evaluate the proposal designed. To obtain results are used methods in the theoretical and empirical levels. Besides, are use techniques that favored the design and evaluation. Is designed the intranet of the Faculty of Industrial Engineering and Tourism. Is evaluated the proposed design for the validation of the results.
Resumo:
We build a system to support search and visualization on heterogeneous information networks. We first build our system on a specialized heterogeneous information network: DBLP. The system aims to facilitate people, especially computer science researchers, toward a better understanding and user experience about academic information networks. Then we extend our system to the Web. Our results are much more intuitive and knowledgeable than the simple top-k blue links from traditional search engines, and bring more meaningful structural results with correlated entities. We also investigate the ranking algorithm, and we show that the personalized PageRank and proposed Hetero-personalized PageRank outperform the TF-IDF ranking or mixture of TF-IDF and authority ranking. Our work opens several directions for future research.
Resumo:
International audience
Resumo:
Things change. Words change, meaning changes and use changes both words and meaning. In information access systems this means concept schemes such as thesauri or clas- sification schemes change. They always have. Concept schemes that have survived have evolved over time, moving from one version, often called an edition, to the next. If we want to manage how words and meanings - and as a conse- quence use - change in an effective manner, and if we want to be able to search across versions of concept schemes, we have to track these changes. This paper explores how we might expand SKOS, a World Wide Web Consortium (W3C) draft recommendation in order to do that kind of tracking.The Simple Knowledge Organization System (SKOS) Core Guide is sponsored by the Semantic Web Best Practices and Deployment Working Group. The second draft, edited by Alistair Miles and Dan Brickley, was issued in November 2005. SKOS is a “model for expressing the basic structure and content of concept schemes such as thesauri, classification schemes, subject heading lists, taxonomies, folksonomies, other types of controlled vocabulary and also concept schemes embedded in glossaries and terminologies” in RDF. How SKOS handles version in concept schemes is an open issue. The current draft guide suggests using OWL and DCTERMS as mechanisms for concept scheme revision.As it stands an editor of a concept scheme can make notes or declare in OWL that more than one version exists. This paper adds to the SKOS Core by introducing a tracking sys- tem for changes in concept schemes. We call this tracking system vocabulary ontogeny. Ontogeny is a biological term for the development of an organism during its lifetime. Here we use the ontogeny metaphor to describe how vocabularies change over their lifetime. Our purpose here is to create a conceptual mechanism that will track these changes and in so doing enhance information retrieval and prevent document loss through versioning, thereby enabling persistent retrieval.
Resumo:
This paper presents our work at 2016 FIRE CHIS. Given a CHIS query and a document associated with that query, the task is to classify the sentences in the document as relevant to the query or not; and further classify the relevant sentences to be supporting, neutral or opposing to the claim made in the query. In this paper, we present two different approaches to do the classification. With the first approach, we implement two models to satisfy the task. We first implement an information retrieval model to retrieve the sentences that are relevant to the query; and then we use supervised learning method to train a classification model to classify the relevant sentences into support, oppose or neutral. With the second approach, we only use machine learning techniques to learn a model and classify the sentences into four classes (relevant & support, relevant & neutral, relevant & oppose, irrelevant & neutral). Our submission for CHIS uses the first approach.
Resumo:
Artificial Intelligence is reshaping the field of fashion industry in different ways. E-commerce retailers exploit their data through AI to enhance their search engines, make outfit suggestions and forecast the success of a specific fashion product. However, it is a challenging endeavour as the data they possess is huge, complex and multi-modal. The most common way to search for fashion products online is by matching keywords with phrases in the product's description which are often cluttered, inadequate and differ across collections and sellers. A customer may also browse an online store's taxonomy, although this is time-consuming and doesn't guarantee relevant items. With the advent of Deep Learning architectures, particularly Vision-Language models, ad-hoc solutions have been proposed to model both the product image and description to solve this problems. However, the suggested solutions do not exploit effectively the semantic or syntactic information of these modalities, and the unique qualities and relations of clothing items. In this work of thesis, a novel approach is proposed to address this issues, which aims to model and process images and text descriptions as graphs in order to exploit the relations inside and between each modality and employs specific techniques to extract syntactic and semantic information. The results obtained show promising performances on different tasks when compared to the present state-of-the-art deep learning architectures.
Resumo:
Due to both the widespread and multipurpose use of document images and the current availability of a high number of document images repositories, robust information retrieval mechanisms and systems have been increasingly demanded. This paper presents an approach to support the automatic generation of relationships among document images by exploiting Latent Semantic Indexing (LSI) and Optical Character Recognition (OCR). We developed the LinkDI (Linking of Document Images) service, which extracts and indexes document images content, computes its latent semantics, and defines relationships among images as hyperlinks. LinkDI was experimented with document images repositories, and its performance was evaluated by comparing the quality of the relationships created among textual documents as well as among their respective document images. Considering those same document images, we ran further experiments in order to compare the performance of LinkDI when it exploits or not the LSI technique. Experimental results showed that LSI can mitigate the effects of usual OCR misrecognition, which reinforces the feasibility of LinkDI relating OCR output with high degradation.
Resumo:
The article presents and discusses issues such as informativeness, offering of directions and information retrieval, and also lists definitions of information and mediation. Based on the topics presented, the possible problems faced by information professionals are discussed while cultural mediators in the context of art museums.
Resumo:
Formal Concept Analysis is an unsupervised machine learning technique that has successfully been applied to document organisation by considering documents as objects and keywords as attributes. The basic algorithms of Formal Concept Analysis then allow an intelligent information retrieval system to cluster documents according to keyword views. This paper investigates the scalability of this idea. In particular we present the results of applying spatial data structures to large datasets in formal concept analysis. Our experiments are motivated by the application of the Formal Concept Analysis idea of a virtual filesystem [11,17,15]. In particular the libferris [1] Semantic File System. This paper presents customizations to an RD-Tree Generalized Index Search Tree based index structure to better support the application of Formal Concept Analysis to large data sources.
Resumo:
This paper reports the introduction of an evidence-based medicine fellowship in a children’s teaching hospital. The results are presented of a self-reported ‘evidence-based medicine’ questionnaire, the clinical questions requested through the information retrieval service are outlined and the results of an information retrieval service user questionnaire are reported. It was confirmed that clinicians have frequent clinical questions that mostly remain unanswered. The responses to four questions with ‘good quality’ evidence-based answers were reviewed and suggest that at least one-quarter of doctors were not aware of the current best available evidence. There was a high level of satisfaction with the information retrieval service; 19% of users indicated that the information changed their clinical practice and 73% indicated that the information confirmed their clinical practice. The introduction of an evidence-based medicine fellowship is one method of disseminating the practice of evidence-based medicine in a tertiary children’s hospital.
Resumo:
One of the goals in the field of Music Information Retrieval is to obtain a measure of similarity between two musical recordings. Such a measure is at the core of automatic classification, query, and retrieval systems, which have become a necessity due to the ever increasing availability and size of musical databases. This paper proposes a method for calculating a similarity distance between two music signals. The method extracts a set of features from the audio recordings, models the features, and determines the distance between models. While further work is needed, preliminary results show that the proposed method has the potential to be used as a similarity measure for musical signals.
Resumo:
Projecto Final de Mestrado para obtenção do grau de Mestre em Engenharia Informática e de Computadores