900 resultados para One-point attachment


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Retirado do blog de Marc Pickren do dia 13 jun. 2014.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sound the vuvuzelas, the World Cup is officially here. The biggest sporting event in the world is set to break all kinds of viewing records. Sporting in the digital world is just as much about stats as it is about the game itself. Enter Brandwatch. The social media analytics company has taken it upon itself to track social media statistics for the entire run of the World Cup with their new real-time data visualization tool.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The subtracted kernel approach is shown to be a powerful method to be implemented recursively in scattering equations with regular plus point-like interactions. The advantages of the method allows one to recursively renormalize the potentials, with higher derivatives of the Dirac-delta, improving previous results. The applicability of the method is verified in the calculation of the 1 So nucleon-nucleon phase-shifts, when considering a potential with one-pion-exchange plus a contact interaction and its derivatives. The S-1(0) renormalization parameters are fitted to the data. The method can in principle be extended to any derivative order of the contact interaction, to higher partial waves and to coupled channels. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work we compute the most general massive one-loop off-shell three-point vertex in D-dimensions, where the masses, external momenta and exponents of propagators are arbitrary. This follows our previous paper in which we have calculated several new hypergeometric series representations for massless and massive (with equal masses) scalar one-loop three-point functions, in the negative dimensional approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this article we present the complete massless and massive one-loop triangle diagram results using the negative dimensional integration method (NDIM). We consider the following cases: massless internal fields; one massive, two massive with the same mass m and three equal masses for the virtual particles. Our results are given in terms of hypergeometric and hypergeometric-type functions of the external momenta (and masses for the massive cases) where the propagators in the Feynman integrals are raised to arbitrary exponents and the dimension of the space-time is D. Our approach reproduces the known results; it produces other solutions as yet unknown in the literature as well. These new solutions occur naturally in the context of NDIM revealing a promising technique to solve Feynman integrals in quantum field theories.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show that at one-loop order, negative-dimensional, Mellin-Barnes (MB) and Feynman parametrization (FP) approaches to Feynman loop integral calculations are equivalent. Starting with a generating functional, for two and then for n-point scalar integrals, we show how to reobtain MB results, using negative-dimensional and FP techniques. The n-point result is valid for different masses, arbitrary exponents of propagators and dimension.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The hybrid formalism for the superstring is used to compute one-loop amplitudes with an arbitrary number of external d = 4 supergravity states. These one-loop N-point amplitudes are expressed as Koba-Nielsen-like formulas with manifest d = 4 supersymmetry. (C) 2002 Published by Elsevier B.V. B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider a new type of point interaction in one-dimensional quantum mechanics. It is characterized by a boundary condition at the origin that involves the second and/or higher order derivatives of the wavefunction. The interaction is effectively energy dependent. It leads to a unitary S-matrix for the transmission-reflection problem. The energy dependence of the interaction can be chosen such that any given unitary S-matrix (or the transmission and reflection coefficients) can be reproduced at all energies. Generalization of the results to coupled-channel cases is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider a four-parameter family of point interactions in one dimension. This family is a generalization of the usual delta-function potential. We examine a system consisting of many particles of equal masses that are interacting pairwise through such a generalized point interaction. We follow McGuire who obtained exact solutions for the system when the interaction is the delta-function potential. We find exact bound states with the four-parameter family. For the scattering problem, however, we have not been so successful. This is because, as we point out, the condition of no diffraction that is crucial in McGuire's method is nor satisfied except when the four-parameter family is essentially reduced to the delta-function potential.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

By using Wu and Yu's pseudo-potential, we construct point interactions in one dimension that are complex but conform to space-time reflection (PT) invariance. The resulting point interactions are equivalent to those obtained by Albeverio, Fei and Kurasov as self-adjoint extensions of the kinetic energy operator.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is known that there is a four-parameter family of point interactions in one-dimensional quantum mechanics. We point out that, as far as physics is concerned, it is sufficient to use three of the four parameters. The fourth parameter is redundant. The apparent violation of time-reversal invariance in the presence of the fourth parameter is an artifact.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is a four-parameter family of point interactions in one-dimensional quantum mechanics. They represent all possible self-adjoint extensions of the kinetic energy operator. If time-reversal invariance is imposed, the number of parameters is reduced to three. One of these point interactions is the familiar delta function potential but the other generalized ones do not seem to be widely known. We present a pedestrian approach to this subject and comment on a recent controversy in the literature concerning the so-called delta' interaction. We emphasize that there is little resemblance between the delta' interaction and what its name suggests.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There are point interactions in one dimension that can be interpreted as self-adjoint extensions (SAEs) of the kinetic energy [KE] operator. Here, we report the results obtained in two recent papers cited in [1]. In the first, we consider point interactions in one dimension in the form of the Fermi pseudo-potential, in one and two-channel cases. In the second, we consider a new type of point interactions that are self-adjoint and effectively energy-dependent. © 2005 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The massless 4-point one-loop amplitude computation in the pure spinor formalism is shown to agree with the computation in the RNS formalism. © SISSA 2006.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Different mathematical methods have been applied to obtain the analytic result for the massless triangle Feynman diagram yielding a sum of four linearly independent (LI) hypergeometric functions of two variables F-4. This result is not physically acceptable when it is embedded in higher loops, because all four hypergeometric functions in the triangle result have the same region of convergence and further integration means going outside those regions of convergence. We could go outside those regions by using the well-known analytic continuation formulas obeyed by the F-4, but there are at least two ways we can do this. Which is the correct one? Whichever continuation one uses, it reduces a number of F-4 from four to three. This reduction in the number of hypergeometric functions can be understood by taking into account the fundamental physical constraint imposed by the conservation of momenta flowing along the three legs of the diagram. With this, the number of overall LI functions that enter the most general solution must reduce accordingly. It remains to determine which set of three LI solutions needs to be taken. To determine the exact structure and content of the analytic solution for the three-point function that can be embedded in higher loops, we use the analogy that exists between Feynman diagrams and electric circuit networks, in which the electric current flowing in the network plays the role of the momentum flowing in the lines of a Feynman diagram. This analogy is employed to define exactly which three out of the four hypergeometric functions are relevant to the analytic solution for the Feynman diagram. The analogy is built based on the equivalence between electric resistance circuit networks of types Y and Delta in which flows a conserved current. The equivalence is established via the theorem of minimum energy dissipation within circuits having these structures.