924 resultados para OXIDE GAS SENSORS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thesis aims to exploit properties of thin films for applications such as spintronics, UV detection and gas sensing. Nanoscale thin films devices have myriad advantages and compatibility with Si-based integrated circuits processes. Two distinct classes of material systems are investigated, namely ferromagnetic thin films and semiconductor oxides. To aid the designing of devices, the surface properties of the thin films were investigated by using electron and photon characterization techniques including Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), grazing incidence X-ray diffraction (GIXRD), and energy-dispersive X-ray spectroscopy (EDS). These are complemented by nanometer resolved local proximal probes such as atomic force microscopy (AFM), magnetic force microscopy (MFM), electric force microscopy (EFM), and scanning tunneling microscopy to elucidate the interplay between stoichiometry, morphology, chemical states, crystallization, magnetism, optical transparency, and electronic properties. Specifically, I studied the effect of annealing on the surface stoichiometry of the CoFeB/Cu system by in-situ AES and discovered that magnetic nanoparticles with controllable areal density can be produced. This is a good alternative for producing nanoparticles using a maskless process. Additionally, I studied the behavior of magnetic domain walls of the low coercivity alloy CoFeB patterned nanowires. MFM measurement with the in-plane magnetic field showed that, compared to their permalloy counterparts, CoFeB nanowires require a much smaller magnetization switching field , making them promising for low-power-consumption domain wall motion based devices. With oxides, I studied CuO nanoparticles on SnO2 based UV photodetectors (PDs), and discovered that they promote the responsivity by facilitating charge transfer with the formed nanoheterojunctions. I also demonstrated UV PDs with spectrally tunable photoresponse with the bandgap engineered ZnMgO. The bandgap of the alloyed ZnMgO thin films was tailored by varying the Mg contents and AES was demonstrated as a surface scientific approach to assess the alloying of ZnMgO. With gas sensors, I discovered the rf-sputtered anatase-TiO2 thin films for a selective and sensitive NO2 detection at room temperature, under UV illumination. The implementation of UV enhances the responsivity, response and recovery rate of the TiO2 sensor towards NO2 significantly. Evident from the high resolution XPS and AFM studies, the surface contamination and morphology of the thin films degrade the gas sensing response. I also demonstrated that surface additive metal nanoparticles on thin films can improve the response and the selectivity of oxide based sensors. I employed nanometer-scale scanning probe microscopy to study a novel gas senor scheme consisting of gallium nitride (GaN) nanowires with functionalizing oxides layer. The results suggested that AFM together with EFM is capable of discriminating low-conductive materials at the nanoscale, providing a nondestructive method to quantitatively relate sensing response to the surface morphology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, the effect of electric field enhancement on Pt/nanostructured ZnO Schottky diode based hydrogen sensors under reverse bias condition has been investigated. Current-voltage characteristics of these diodes have been studied at temperatures from 25 to 620 °C and their free carrier density concentration was estimated by exposing the sensors to hydrogen gas. The experimental results show a significantly lower breakdown voltage in reversed bias current-voltage characteristics than the conventional Schottky diodes and also greater lateral voltage shift in reverse bias operation than the forward bias. This can be ascribed to the increased localized electric fields emanating from the sharp edges and corners of the nanostructured morphologies. At 620 °C, voltage shifts of 114 and 325 mV for 0.06% and 1% hydrogen have been recorded from dynamic response under the reverse bias condition. © 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ethanol sensing performance of gas sensors made of Fe doped and Fe implanted nanostructured WO3 thin films prepared by a thermal evaporation technique was investigated. Three different types of nanostructured thin films, namely, pure WO3 thin films, iron-doped WO3 thin films by co-evaporation and Fe-implanted WO3 thin films have been synthesized. All the thin films have a film thickness of 300 nm. The physical, chemical and electronic properties of these films have been optimized by annealing heat treatment at 300ºC and 400ºC for 2 hours in air. Various analytical techniques were employed to characterize these films. Atomic Force Microscopy and Transmission Electron Microscopy revealed a very small grain size of the order 5-10 nm in as-deposited WO3 films, and annealing at 300ºC or 400ºC did not result in any significant change in grain size. This study has demonstrated enhanced sensing properties of WO3 thin film sensors towards ethanol at lower operating temperature, which was achieved by optimizing the physical, chemical and electronic properties of the WO3 film through Fe doping and annealing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports the development of nanoporous tungsten trioxide (WO3) Schottky diode-based gas sensors. Nanoporous WO3 films were prepared by anodic oxidation of tungsten foil in ethylene glycol mixed with ammonium fluoride and a small amount of water. Anodization resulted in highly ordered WO3 films with a large surface-to-volume ratio. Utilizing these nanoporous structures, Schottky diode-based gas sensors were developed by depositing a platinum (Pt) catalytic contact and tested towards hydrogen gas and ethanol vapour. Analysis of the current–voltage characteristics and dynamic responses of the sensors indicated that these devices exhibited a larger voltage shift in the presence of hydrogen gas compared to ethanol vapour at an optimum operating temperature of 200 °C. The gas sensing mechanism was discussed, associating the response to the intercalating H+ species that are generated as a result of hydrogen and ethanol molecule breakdowns onto the Pt/WO3 contact and their spill over into nanoporous WO3.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Emissions of gases and particles from sea-faring ships have been shown to impact on the atmospheric chemistry and climate. To efficiently monitor and report these emissions found from a ship’s plume, the concept of using a multi-rotor or UAV to hover inside or near the exhaust of the ship to actively record the data in real time is being developed. However, for the required sensors obtain the data; their sensors must face into the airflow of the ships plume. This report presents an approach to have sensors able to read in the chemicals and particles emitted from the ship without affecting the flight dynamics of the multi-rotor UAV by building a sealed chamber in which a pump can take in the surrounding air (outside the downwash effect of the multi-rotor) where the sensors are placed and can analyse the gases safely. Results show that the system is small, lightweight and air-sealed and ready for flight test.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The activity of Cr in solid Cr-Mo alloys has been measured at 1873 K using a metal-oxide-gas equilibrium technique. Thin foils of Mo were equilibrated with solid Cr203 under flowing gas mixtures of argon, hydrogen and watervapourof known composition. The equilibrium concentration of Cr in Mo was determined by chemical analysis. These measurements indicate positive deviations from Raoult's law. The activity data obtained in the study at 1873 K are combined with free energy of mixing at 1471 K, calorimetric enthalpy of mixing at 1673 K, and experimental evidence of phase separation at lower temperatures, reported in the literature, to obtain an optimised set of thermodynamic parameters for the Cr-Mosystem in the solid state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Graphene layers have been transferred directly on to paper without any intermediate layers to yield G-paper. Resistive gas sensors have been fabricated using strips of G-paper. These sensors achieved a remarkable lower limit of detection of similar to 300 parts per trillion (ppt) for NO2, which is comparable to or better than those from other paper-based sensors. Ultraviolet exposure was found to dramatically reduce the recovery time and improve response times. G-paper sensors are also found to be robust against minor strain, which was also found to increase sensitivity. G-paper is expected to enable a simple and inexpensive low-cost flexible graphene platform

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanostructured ZnO materials are of great significance for their potential applications in photoelectronic devices, light-emitting displays, catalysis and gas sensors. In this paper, we report a new method to produce large area periodical bowl-like micropatterns of single crystal ZnO through aqueous-phase epitaxial growth on a ZnO single crystal substrate. A self-assembled monolayer of polystyrene microspheres was used as a template to confine the epitaxial growth of single crystal ZnO from the substrate, while the growth morphology was well controlled by citrate anions. Moreover, it was found that the self-assembled monolayer of colloidal spheres plays an important role in reduction of the defect density in the epitaxial ZnO layer. Though the mechanism is still open for further investigation, the present result indicates a new route to suppress the dislocations in the fabrication of single crystal ZnO film. A predicable application of this new method is for the fabrication of two-dimensional photonic crystal structures on light emitting diode surfaces.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reviews and addresses certain aspects of Silicon-On-Insulator (SOI) technologies for a harsh environment. The paper first describes the need for specialized sensors in applications such as (i) domestic and other small-scale boilers, (ii) CO2 Capture and Sequestration, (iii) oil & gas storage and transportation, and (iv) automotive. We describe in brief the advantages and special features of SOI technology for sensing applications requiring temperatures in excess of the typical bulk silicon junction temperatures of 150oC. Finally we present the concepts, structures and prototypes of simple and smart micro-hotplate and Infra Red (IR) based emitters for NDIR (Non Dispersive IR) gas sensors in harsh environments. © 2012 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pt Schottky diode gas sensors for CO are fabricated using AlGaN/ GaN high electron mobility transistor ( HEMTs) structure. The diodes show a remarkable sensor signal (3 mA, in N-2; 2mA in air ambient) biased 2V after 1% CO is introduced at 50 degrees C. The Schottky barrier heights decrease for 36meV and 27meV in the two cases respectively. The devices exhibit a slow recovery characteristic in air ambient but almost none in the background of pure N2, which reveals that oxygen molecules could accelerate the desorption of CO and offer restrictions to CO detection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) are hollow tubes of sp2-hybridised carbon with diameters of the order of nanometres. Due to their unique physical properties, which include ballistic transport and high mechanical strength, they are of significant interest for technological applications. The electronic properties of CNTs are of particular interest for use as gas sensors, interconnect materials in the semi-conductor industry and as the channel material in CNT based field effect transistors. The primary difficulty associated with the use of CNTs in electronic applications is the inability to control electronic properties at the growth stage; as grown CNTs consist of a mixture of metallic and semi-conducting CNTs. Doping has the potential to solve this problem and is a focus of this thesis. Nitrogen-doped CNTs typically have defective structures; the usual hollow CNT structure is replaced by a series of compartments. Through density functional theory (DFT) calculations and experimental results, we propose an explanation for the defective structures obtained, based on the stronger binding of N to the growth catalyst in comparison to C. In real electronic devices, CNTs need to be contacted to metal, we generate the current-voltage (IV) characteristics of metal-contacted CNTs considering both the effect of dopants and the structure of the interface region on electronic properties. We find that substitutionally doped CNTs produce Ohmic contacts and that scattering at the interface is strongly influenced by structure. In addition, we consider the effect of the common vacancy defects on the electronic properties of large diameter CNTs. Defects increase scattering in the CNT, with the greatest scattering occurring for the largest defect (555777). We validate the independent scattering approximation for small diameter CNTs, which enables mean free paths in large diameter CNTs to be calculated, with a smaller mean free paths found for larger defects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Poly-L-lactide (PLLA) is one of the most significant members of a group of polymers regarded as bioresorbable. The degradation of PLLA proceeds through hydrolysis of the ester linkages in the polymer's backbone; however, the time for the complete resorption of orthopaedic devices manufactured from PLLA is known to be in excess of five years in a normal physiological environment. To evaluate the degradation of PLLA in an accelerated time period, PLLA pellets were processed by compression moulding into tensile test specimens, prior to being sterilized by ethylene oxide gas (EtO) and degraded in a phosphate-buffered solution (PBS) at both 50°C and 70°C. On retrieval, at predetermined time intervals, procedures were used to evaluate the material's molecular weight, crystallinity, mechanical strength, and thermal properties. The results from this study suggest that at both 50°C and 70°C, degradation proceeds by a very similar mechanism to that observed at 37°C in vitro and in vivo. The degradation models developed also confirmed the dependence of mass loss, melting temperature, and glass transition temperature (Tg) on the polymer's molecular weight throughout degradation. Although increased temperature appears to be a suitable method for accelerating the degradation of PLLA, relative to its physiological degradation rate, concerns still remain over the validity of testing above the polymer's Tg and the significance of autocatalysis at increased temperatures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We review the design and fabrication of thin-film composite optical waveguides (OWG) with high refractive index for sensor applications. A highly sensitive optical sensor device has been developed on the basis of thin-film, composite OWG. The thin-film OWG was deposited onto the surface of a potassium-ion-exchanged (K+) glass OWG by sputtering or spin coating (5-9 mm wide, and with tapers at both ends). By allowing an adiabatic transition of the guided light from the secondary OWG to the thin-film OWG, the electric field of the evanescent wave at the thin film was enhanced. The attenuation of the guided light in the thin film layer was small, and the guided light intensity changed sensitively with the refractive index of the cladding layer. Our experimental results demonstrate that thin-film, composite OWG gas sensors or immunosensors are much more sensitive than sensors based on other technologies. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Collagen is widely used as a biomedical material, and its importance is likely to grow as research and understanding progresses in this field. As a biomedical material, ensuring the sterility of collagen before use as, or incorporation into, a medical device is paramount. However, common sterilisation techniques can induce changes in the physical structure and protein chemistry of collagen, potentially affecting the performance. In this preliminary study, the influence of autoclaving, gamma irradiation and ethylene oxide gas sterilisation on the denaturation temperature and helical content of the collagen was evaluated using differential scanning calorimetry and Fourier transform infrared spectroscopy. Early results indicate that all sterilisation techniques affect collagen properties but suggest that the least damaging of the techniques investigated was y irradiation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The flexibility of the metal-organic framework Cu-2(OH)(C8H3O7S)(H2O)center dot 2H(2)O (Cu-SIP-3) toward reversible single-crystal to single-crystal transformations is demonstrated using in situ diffraction methods at variable temperature. At temperatures below a dehydration-induced phase transition (T < 370 K) the structure is confirmed as being hydrated. In the temperature range where the transition takes place (370 K < T < 405 K) no discrete, sharp Bragg peaks can be seen in the single-crystal X-ray diffraction pattern, indicating significant loss of long-range order. At temperatures higher than 405 K, the Bragg peaks return and the structure can be refined as dehydrated Cu-SIP-3. The loss of guest water molecules can be followed at temperatures below the phase transition giving insight into the mechanism of the dehydration. Addition of nitric oxide gas to the material above the gating opening pressure of 275 mbar also leads to loss of Bragg scattering in the diffraction pattern.