929 resultados para ORGANIC-SOLVENTS
Resumo:
Nickel appears the most promising for the replacement of palladium among the inexpensive transition metals for that it is active for Heck reaction and about 500 times cheaper than palladium. In this article, we describe our recent results in the area of nickel-catalyzed Heck vinylations. Main focus is on the influence of ligand concentration in different organic solvents and the effects of the addition of water. The conversion is high in NMP and increases with increasing of PPh3/Ni ratio; in ethanol and toluene the conversion presents a maximum value on Ni(PPh3)(2). The effect of the addition of water is sensitive to the concentration of PPh3 and the nature of solvent, it was well explained with the formation and transfer of the active species in the different solvent systems.
Resumo:
An experimentally simple and inexpensive catalyst system based on hexabutylguanidinium/ZnBr, has been developed for the coupling of carbon dioxide and epoxides to form cyclic carbonates with significant catalytic activity under mild reaction conditions without using additional organic solvents (e.g. the turnover frequencies (TOF, h(-1)) values as high as 6.6 x 10(3) h(-1) for styrene oxide and 1.01 x 10(4) h(-1) for epichlorohydrin). This catalyst system also offers the advantages of recyclability and reusability. Therefore, it is a very effective, environmentally benign, and simple catalytic process. The special steric and electrophilic characteristics of hexabutylguanidinium bromide ionic liquid result in the prominent performance of this novel catalyst system.
Resumo:
Polyetherimides and copolymers have been synthesized in one pot from bis(chlorophthalimide), dichlorodiphenylsulfone, and bisphenolate using diphenylsulfone as the solvent. The inherent viscosities of the obtained polyimides are in the range of 0.32-0.72 dL/g, and the structures of polyimides were confirmed by IR and elemental analyses. All of the polyimides have good solubility in common organic solvents. The 5% weight-loss temperatures of the polyimides were 429-507 C in air. The glass transition temperatures (T3) of 4,4'-(9-fluorenylidene) diphenol-based polyimides are in the range of 253-268 degrees C. The Tg of bisphenol A-based polyimides is in the range of 198204 degrees C, while the T-g change inconspicuously when the ratios of diphenylsulfone increase. The wide-angle X-ray diffraction showed that all polyimides prepared are amorphous.
Resumo:
2-(4-Aminophenyl)-5-aminopyrimidine (4) is synthesized via a condensation reaction of vinamidium salts and amidine chloride salts, followed by hydrazine palladium catalyzed reduction. A series of novel homo- and copolyimides containing pyrimidine unit are prepared from the diamine and 1,4-phenylenediamine (PDA) with pyromellitic dianhydride (PMDA) or 3,3',4,4'-biphenyl tertracarboxylic dianhydride (BPDA) via a conventional two-step thermal imidization method. The poly(amic acid) precursors had inherent viscosities of 0.97-4.38 dL/g (c = 0.5 g/dL, in DMAc, 30 degrees C) and all of them could be cast and thermally converted into flexible and tough polyimide films. All of the polyimides showed excellent thermal stability and mechanical properties. The glass transition temperatures of the resulting polyimides are in the range of 307-434 degrees C and the 10% weight loss temperature is in the range of 556-609 degrees C under air. The polyimide films possess strength at break in the range of 185-271 MPa, elongations at break in the range of 6.8-51%, and tensile modulus in the range of 3.5-6.46 GPa. The polymer films are insoluble in common organic solvents, exhibiting high chemical resistance.
Resumo:
Two new light-emitting PPV-based copolymers bearing electron-withdrawing triazole unit in the main chain have been synthesized by Wittig reaction between triazole diphosphonium salt and the corresponding dialdehyde monomers, respectively. Their optical and physical properties are characterized by UV-vis, photoluminescence (PL), TGA and DSC. The resulting copolymers are highly soluble in common organic solvents and have high Tg and Td values. They show blue-greenish fluorescence in solution (lambda(max) 502 and 508 nm) and green fluorescence in the solid state (lambda(max) 520 and 526 nm), respectively.
Resumo:
Two novel conjugated polyquinolines (F-PA-PQ and Cz-PA-PQ) with the phenylamine moiety as hole-transporting segment were synthesized. The resulting polyquinolines exhibited excellent thermal stabilities (Tg > 200degreesC), good solubility in common organic solvents and film-forming properties. Their optical absorption, photoluminescence, electroluminescence and sensory properties were studied.
Resumo:
Neutral Ni(II) salicylaldiminato complexes activated with modified methylaluminoxane as catalysts were used for the vinylic polymerization of norbornene. Catalyst activities of up to 7.08 x 10(4) kg(pol)/(mol(Ni) (.) h) and viscosity-average molecular weights of polymer up to 1.5 x 10(6) g/mol were observed at optimum conditions. Polynorbornenes are amorphous, soluble in organic solvents, highly stable, and show glass-transition temperatures around 390 degreesC. Catalyst activity, polymer yield, and polymer molecular weight can be controlled over a wide range by the variation of the reaction parameters such as the Al/Ni ratio, monomer/catalyst ratio, monomer concentration, polymerization reaction temperature, and time.
Resumo:
Optically active 2,2'-dimethoxy-6,6'-diacetyl-1,1'-binaphthyl (DMDABN) was prepared from 2,2'-dimethoxy-1,1'-binaphthyl, and its structure was comfirmed by elemental analysis, NRM, IR and MS. Optically active polyquinolines were synthesized with DMDABN and 4,4'-diamino-3,3'-dibenzoyldiphenyl ether by Friedlander reaction. These polyquinolines showed high glass transition temperatures (474-578 K), high decomposition temperatures (703-770 K), insolubility in many common organic solvents and strong chiral activity.
Resumo:
The graft copolymerization of butyl acrylate onto poly(vinyl alcohol) with eerie ammonium nitrate as redox initiator in a aqueous medium has been investigated. The formation of graft copolymer was confirmed by means of IR, scanning electron microscopy (SEM), and wide-angle X-ray diffraction (WAXD). The percentage of mononer conversion and percentage of grafting varied with concentrations of initiator, nitric acid, monomer, macromolecular backbone (X-n = 1750, M = 80 000), reaction temperature and reaction time. Some inorganic salts and organic solvents have a great influence upon grafting. The reaction mechanism has been explored, and rate equations for the reaction are established. (C) 2000 John Wiley & Sons, Inc.
Resumo:
Two new blue light-emitting PPV-based conjugated copolymers containing both an electron-withdrawing unit (triazole-TAZ) and electron-rich moieties (carbazole-CAR and bicarbazole-BCAR) were prepared by Wittig condensation polymerization between the triazole diphosphonium salt and the corresponding dialdehyde monomers. Their structures and properties were characterized by FT-IR, TGA, DSC, UV-Vis, PL spectroscopy and electrochemical measurements. The resulting copolymers are soluble in common organic solvents and thermally stable with a T-g of 147degreesC for TAZ-CAR-PPV and of 157degreesC for TAZ-BCAR-PPV. The maximum photoluminescence wavelengths of TAZ-CAR-PPV and TAZ-BCAR-PPV film appear at 460 nm and 480 nm, respectively. Cyclic voltammetry measurement demonstrates that TAZ-BCAR-PPV has good electrochemical reversibility, while TAZ-CAR-PPV exhibits the irreversible redox process. The triazole unit was found to be an effective pi-conjugation interrupter and can play the rigid spacer role in determining the emission colour of the resulting copolymer.
Resumo:
A series of light-emitting poly(p-phenylene vinylene)s with triphenylamine units as hole-transporting moieties in the main chain were synthesized via Wittig condensation in good yields. The newly formed vinylene double bonds possessed a trans configuration, which was confirmed by Fourier transform infrared and NMR spectroscopy. The high glass-transition temperature (83-155 degreesC) and high decomposition temperature (> 300 degreesC) suggested that the resulting copolymers possessed high thermal stability. These copolymers, especially TAAPV1, possessed a high weight-average molecular weight (47,144) and a low polydispersity index (1.55). All the copolymers could be dissolved in common organic solvents, such as tetrahydrofuran (THF), CHCl3, CH2Cl2, and toluene, and exhibited intense photoluminesence in THF (the emission maxima were located from 478 to 535 nm) and in film (from 478 to 578 nm). The low onsets of the oxidation potential (0.6-0.75 V) suggested that the alternating copolymers possessed a good hole-transporting property due to the incorporation of triphenylamine moieties. (C) 2001 John Wiley & Sons, Inc.
Resumo:
The effect of organic solvents on the electrochemical behavior of the soluble polyimide(PI) was studied by using cyclic voltammetry. It was found that PI can undergo electrochemical reaction in some solvents, while the electrochemical response can not be observed in other solvents. The results of IR spectra indicate that the effect of the solvents on the electrochemical behavior of PI is due to the different interactions between PI and the solvent.
Resumo:
Optically active 2,2'-bis(2-trifluoro-4-aminophenoxy)-1,1'-binaphthyl and its corresponding racemate were prepared by a nucleophilic substitution reaction of 1,1'-bi-2-naphthol with 2-chloro-5-nitrotrifluorotoluene and subsequently by the reduction of the resulting dinitro compounds. a series of optically active and optically inactive aromatic polyimides also were prepared therefrom, These polymers readily were soluble in common organic solvents such as pyridine, N,N'-dimethylacetamide, and m-cresol and had glass-transition temperatures of 256 similar to 278 degrees C. The specific rotations of the chiral polymers ranged from 167 similar to 258 degrees, and their chiroptical properties also were studied. (C) 1999 John Wiley & Sons Inc.
Resumo:
A new kind of monomers including aromatic spirodilactone-5, 5'-carboxy-7,7'-dioxo-2,2'-spirobi(benzo-[c]tetrahydrofuran) is synthesized from m-xylene and paraformaldehyde. It is converted to a series of polyamides and polyesters by means of low-temperature solution polycondensation and interfacial polycondensation. NMR and IR spectra, solubility, mechanical and thermal properties of all these polymers are investigated. The polymers have high glass transition temperatures and good thermal oxidative properties. All polyamides have high viscosity and good solubility in strong polar organic solvents such as DMSO, DMAc, DMF and NMP. All polyamides can be cast into transparent, flexible and tough films possessing good tensile properties.
Resumo:
A new approach for the crosslinking of polyimides via the lactamization of spirodilactone unit in polyimide backbone was studied by two means: model reaction and the comparison of the properties of the polyimide precursors to those of the crosslinking polymers. Polyimides 4 and 5 were soluble in N,N'dimethylacetamide (DMAc), dimethylformamide (DMF), dimethylsulfoxide (DMSO), N'-methylpyrrolidone (NMP), and other common organic solvents, whereas their corresponding crosslinking polymers were insoluble in these solvents. The glass transition temperatures for polyimide 5 and its crosslinking polymer were 262 degrees C and 291 degrees C, whereas those for polyimide 4 and its crosslinking polymer were 265 degrees C and 360 degrees C. The weight-loss rate of the crosslinling polymers was apparently slower than that of the precursors when the temperature was >400 degrees C. The 10% weight-loss temperature for the polyimides 4 and 5 was <500 degrees C, whereas that for the crosslinking polymers was close to or above 600 degrees C. The results indicate that this type of crosslinking polymer has good thermal properties. The temperature for the formation of lactam was above 180 degrees C. (C) 1999 John Wiley & Sons, Inc.