992 resultados para Numerical tool
Resumo:
Market-based transmission expansion planning gives information to investors on where is the most cost efficient place to invest and brings benefits to those who invest in this grid. However, both market issue and power system adequacy problems are system planers’ concern. In this paper, a hybrid probabilistic criterion of Expected Economical Loss (EEL) is proposed as an index to evaluate the systems’ overall expected economical losses during system operation in a competitive market. It stands on both investors’ and planner’s point of view and will further improves the traditional reliability cost. By applying EEL, it is possible for system planners to obtain a clear idea regarding the transmission network’s bottleneck and the amount of losses arises from this weak point. Sequentially, it enables planners to assess the worth of providing reliable services. Also, the EEL will contain valuable information for moneymen to undertake their investment. This index could truly reflect the random behaviors of power systems and uncertainties from electricity market. The performance of the EEL index is enhanced by applying Normalized Coefficient of Probability (NCP), so it can be utilized in large real power systems. A numerical example is carried out on IEEE Reliability Test System (RTS), which will show how the EEL can predict the current system bottleneck under future operational conditions and how to use EEL as one of planning objectives to determine future optimal plans. A well-known simulation method, Monte Carlo simulation, is employed to achieve the probabilistic characteristic of electricity market and Genetic Algorithms (GAs) is used as a multi-objective optimization tool.
Resumo:
Comparisons are made between experimental measurements and numerical simulations of ionizing flows generated in a superorbital facility. Nitrogen, with a freestream velocity of around 10 km/s, was passed over a cylindrical model, and images were recorded using two-wavelength holographic interferometry. The resulting density, electron concentration, and temperature maps were compared with numerical simulations from the Langley Research Center aerothermodynamic upwind relaxation algorithm. The results showed generally good agreement in shock location and density distributions. Some discrepancies were observed for the electron concentration, possibly, because simulations were of a two-dimensional flow, whereas the experiments were likely to have small three-dimensional effects.
Resumo:
Faced with today’s ill-structured business environment of fast-paced change and rising uncertainty, organizations have been searching for management tools that will perform satisfactorily under such ambiguous conditions. In the arena of managerial decision making, one of the approaches being assessed is the use of intuition. Based on our definition of intuition as a non-sequential information-processing mode, which comprises both cognitive and affective elements and results in direct knowing without any use of conscious reasoning, we develop a testable model of integrated analytical and intuitive decision making and propose ways to measure the use of intuition.
Resumo:
A combination of deductive reasoning, clustering, and inductive learning is given as an example of a hybrid system for exploratory data analysis. Visualization is replaced by a dialogue with the data.
Resumo:
The use of computational fluid dynamics simulations for calibrating a flush air data system is described, In particular, the flush air data system of the HYFLEX hypersonic vehicle is used as a case study. The HYFLEX air data system consists of nine pressure ports located flush with the vehicle nose surface, connected to onboard pressure transducers, After appropriate processing, surface pressure measurements can he converted into useful air data parameters. The processing algorithm requires an accurate pressure model, which relates air data parameters to the measured pressures. In the past, such pressure models have been calibrated using combinations of flight data, ground-based experimental results, and numerical simulation. We perform a calibration of the HYFLEX flush air data system using computational fluid dynamics simulations exclusively, The simulations are used to build an empirical pressure model that accurately describes the HYFLEX nose pressure distribution ol cr a range of flight conditions. We believe that computational fluid dynamics provides a quick and inexpensive way to calibrate the air data system and is applicable to a broad range of flight conditions, When tested with HYFLEX flight data, the calibrated system is found to work well. It predicts vehicle angle of attack and angle of sideslip to accuracy levels that generally satisfy flight control requirements. Dynamic pressure is predicted to within the resolution of the onboard inertial measurement unit. We find that wind-tunnel experiments and flight data are not necessary to accurately calibrate the HYFLEX flush air data system for hypersonic flight.
Resumo:
Krylov subspace techniques have been shown to yield robust methods for the numerical computation of large sparse matrix exponentials and especially the transient solutions of Markov Chains. The attractiveness of these methods results from the fact that they allow us to compute the action of a matrix exponential operator on an operand vector without having to compute, explicitly, the matrix exponential in isolation. In this paper we compare a Krylov-based method with some of the current approaches used for computing transient solutions of Markov chains. After a brief synthesis of the features of the methods used, wide-ranging numerical comparisons are performed on a power challenge array supercomputer on three different models. (C) 1999 Elsevier Science B.V. All rights reserved.AMS Classification: 65F99; 65L05; 65U05.
Theoretical and numerical analyses of convective instability in porous media with upward throughflow
Resumo:
Exact analytical solutions have been obtained for a hydrothermal system consisting of a horizontal porous layer with upward throughflow. The boundary conditions considered are constant temperature, constant pressure at the top, and constant vertical temperature gradient, constant Darcy velocity at the bottom of the layer. After deriving the exact analytical solutions, we examine the stability of the solutions using linear stability theory and the Galerkin method. It has been found that the exact solutions for such a hydrothermal system become unstable when the Rayleigh number of the system is equal to or greater than the corresponding critical Rayleigh number. For small and moderate Peclet numbers (Pe less than or equal to 6), an increase in upward throughflow destabilizes the convective flow in the horizontal layer. To confirm these findings, the finite element method with the progressive asymptotic approach procedure is used to compute the convective cells in such a hydrothermal system. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
The assessment of groundwater conditions within an unconfined aquifer with a periodic boundary condition is of interest in many hydrological and environmental problems. A two-dimensional numerical model for density dependent variably saturated groundwater flow, SUTRA (Voss, C.I., 1984. SUTRA: a finite element simulation model for saturated-unsaturated, fluid-density dependent ground-water flow with energy transport or chemically reactive single species solute transport. US Geological Survey, National Center, Reston, VA) is modified in order to be able to simulate the groundwater flow in unconfined aquifers affected by a periodic boundary condition. The basic flow equation is changed from pressure-form to mixed-form. The model is also adjusted to handle a seepage-face boundary condition. Experiments are conducted to provide data for the groundwater response to the periodic boundary condition for aquifers with both vertical and sloping faces. The performance of the numerical model is assessed using those data. The results of pressure- and mixed-form approximations are compared and the improvement achieved through the mixed-form of the equation is demonstrated. The ability of the numerical model to simulate the water table and seepage-face is tested by modelling some published experimental data. Finally the numerical model is successfully verified against present experimental results to confirm its ability to simulate complex boundary conditions like the periodic head and the seepage-face boundary condition on the sloping face. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
This paper describes a hybrid numerical method for the design of asymmetric magnetic resonance imaging magnet systems. The problem is formulated as a field synthesis and the desired current density on the surface of a cylinder is first calculated by solving a Fredholm equation of the first kind. Nonlinear optimization methods are then invoked to fit practical magnet coils to the desired current density. The field calculations are performed using a semi-analytical method. A new type of asymmetric magnet is proposed in this work. The asymmetric MRI magnet allows the diameter spherical imaging volume to be positioned close to one end of the magnet. The main advantages of making the magnet asymmetric include the potential to reduce the perception of claustrophobia for the patient, better access to the patient by attending physicians, and the potential for reduced peripheral nerve stimulation due to the gradient coil configuration. The results highlight that the method can be used to obtain an asymmetric MRI magnet structure and a very homogeneous magnetic field over the central imaging volume in clinical systems of approximately 1.2 m in length. Unshielded designs are the focus of this work. This method is flexible and may be applied to magnets of other geometries. (C) 1999 Academic Press.
Resumo:
The Self-regulation Skills Interview (SRSI) is a clinical tool designed to measure a range of metacognitive skills essential for rehabilitation planning, monitoring an individual's progress, and evaluating the outcome of treatment interventions. The results of the present study indicated that the SRSI has sound interrater reliability and test-retest reliability. A principle components analysis revealed three SRSI factors: Awareness, Readiness to Change, and Strategy Behavior. A comparison between a group of 61 participants with acquired brain injury (ABI) and a group of 43 non-brain-injured participants indicated that the participants with ABI had significantly lower levels of Awareness and Strategy Behavior, but that level of Readiness to Change was not significantly different between the two groups. The significant relationship observed between the SRSI factors and measures of neuropsychological functioning confirmed the concurrent validity of the scale and supports the value of the SRSI for post-acute assessment.
Resumo:
Numerical methods ave used to solve double diffusion driven reactive flow transport problems in deformable fluid-saturated porous media. in particular, thp temperature dependent reaction rate in the non-equilibrium chemical reactions is considered. A general numerical solution method, which is a combination of the finite difference method in FLAG and the finite element method in FIDAP, to solve the fully coupled problem involving material deformation, pore-fluid flow, heat transfer and species transport/chemical reactions in deformable fluid-saturated porous media has been developed The coupled problem is divided into two subproblems which are solved interactively until the convergence requirement is met. Owing to the approximate nature of the numerical method, if is essential to justify the numerical solutions through some kind of theoretical analysis. This has been highlighted in this paper The related numerical results, which are justified by the theoretical analysis, have demonstrated that the proposed solution method is useful for and applicable to a wide range of fully coupled problems in the field of science and engineering.
Resumo:
The influence of initial perturbation geometry and material propel-ties on final fold geometry has been investigated using finite-difference (FLAC) and finite-element (MARC) numerical models. Previous studies using these two different codes reported very different folding behaviour although the material properties, boundary conditions and initial perturbation geometries were similar. The current results establish that the discrepancy was not due to the different computer codes but due to the different strain rates employed in the two previous studies (i.e. 10(-6) s(-1) in the FLAC models and 10(-14) s(-1) in the MARC models). As a result, different parts of the elasto-viscous rheological field were bring investigated. For the same material properties, strain rate and boundary conditions, the present results using the two different codes are consistent. A transition in Folding behaviour, from a situation where the geometry of initial perturbation determines final fold shape to a situation where material properties control the final geometry, is produced using both models. This transition takes place with increasing strain rate, decreasing elastic moduli or increasing viscosity (reflecting in each case the increasing influence of the elastic component in the Maxwell elastoviscous rheology). The transition described here is mechanically feasible but is associated with very high stresses in the competent layer (on the order of GPa), which is improbable under natural conditions. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The occurrence of foliated rock masses is common in mining environment. Methods employing continuum approximation in describing the deformation of such rock masses possess a clear advantage over methods where each rock layer and each inter-layer interface (joint) is explicitly modelled. In devising such a continuum model it is imperative that moment (couple) stresses and internal rotations associated with the bending of the rock layers be properly incorporated in the model formulation. Such an approach will lead to a Cosserat-type theory. In the present model, the behaviour of the intact rock layer is assumed to be linearly elastic and the joints are assumed to be elastic-perfectly plastic. Condition of slip at the interfaces are determined by a Mohr-Coulomb criterion with tension cut off at zero normal stress. The theory is valid for large deformations. The model is incorporated into the finite element program AFENA and validated against an analytical solution of elementary buckling problems of a layered medium under gravity loading. A design chart suitable for assessing the stability of slopes in foliated rock masses against flexural buckling failure has been developed. The design chart is easy to use and provides a quick estimate of critical loading factors for slopes in foliated rock masses. It is shown that the model based on Euler's buckling theory as proposed by Cavers (Rock Mechanics and Rock Engineering 1981; 14:87-104) substantially overestimates the critical heights for a vertical slope and underestimates the same for sub-vertical slopes. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
Field and laboratory observations have shown that a relatively low beach groundwater table enhances beach accretion. These observations have led to the beach dewatering technique (artificially lowering the beach water table) for combating beach erosion. Here we present a process-based numerical model that simulates the interacting wave motion on the beach. coastal groundwater flow, swash sediment transport and beach profile changes. Results of model simulations demonstrate that the model replicates accretionary effects of a low beach water table on beach profile changes and has the potential to become a tool for assessing the effectiveness of beach dewatering systems. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The earth's tectonic plates are strong, viscoelastic shells which make up the outermost part of a thermally convecting, predominantly viscous layer. Brittle failure of the lithosphere occurs when stresses are high. In order to build a realistic simulation of the planet's evolution, the complete viscoelastic/brittle convection system needs to be considered. A particle-in-cell finite element method is demonstrated which can simulate very large deformation viscoelasticity with a strain-dependent yield stress. This is applied to a plate-deformation problem. Numerical accuracy is demonstrated relative to analytic benchmarks, and the characteristics of the method are discussed.