1000 resultados para North Greenland
Resumo:
In order to reconstruct the temperature of the North Greenland Ice Core Project (NGRIP) site, new measurements of δ15N have been performed covering the time period from the beginning of the Holocene to Dansgaard–Oeschger (DO) event 8. Together with previously measured and mostly published δ15N data, we present for the first time a NGRIP temperature reconstruction for the whole last glacial period from 10 to 120 kyr b2k (thousand years before 2000 AD) including every DO event based on δ15N isotope measurements combined with a firn densification and heat diffusion model. The detected temperature rises at the onset of DO events range from 5 °C (DO 25) up to 16.5 °C (DO 11) with an uncertainty of ±3 °C. To bring measured and modelled data into agreement, we had to reduce the accumulation rate given by the NGRIP ss09sea06bm timescale in some periods by 30 to 35%, especially during the last glacial maximum. A comparison between reconstructed temperature and δ18Oice data confirms that the isotopic composition of the stadial was strongly influenced by seasonality. We evidence an anticorrelation between the variations of the δ18Oice sensitivity to temperature (referred to as α) and obliquity in agreement with a simple Rayleigh distillation model. Finally, we suggest that α might be influenced by the Northern Hemisphere ice sheet volume.
Resumo:
The stratospheric degradation of chlorofluorocarbons (CFCs) releases chlorine, which is a major contributor to the destruction of stratospheric ozone (O3). A recent study reported strong chlorine isotope fractionation during the breakdown of the most abundant CFC (CFC-12, CCl2F2, Laube et al., 2010a), similar to effects seen in nitrous oxide (N2O). Using air archives to obtain a long-term record of chlorine isotope ratios in CFCs could help to identify and quantify their sources and sinks. We analyse the three most abundant CFCs and show that CFC-11 (CCl3F) and CFC-113 (CClF2CCl2F) exhibit significant stratospheric chlorine isotope fractionation, in common with CFC-12. The apparent isotope fractionation (ϵapp) for mid- and high-latitude stratospheric samples are respectively −2.4 (0.5) and −2.3 (0.4) ‰ for CFC-11, −12.2 (1.6) and −6.8 (0.8) ‰ for CFC-12 and −3.5 (1.5) and −3.3 (1.2) ‰ for CFC-113, where the number in parentheses is the numerical value of the standard uncertainty expressed in per mil. Assuming a constant isotope composition of emissions, we calculate the expected trends in the tropospheric isotope signature of these gases based on their stratospheric 37Cl enrichment and stratosphere–troposphere exchange. We compare these projections to the long-term δ (37Cl) trends of all three CFCs, measured on background tropospheric samples from the Cape Grim air archive (Tasmania, 1978–2010) and tropospheric firn air samples from Greenland (North Greenland Eemian Ice Drilling (NEEM) site) and Antarctica (Fletcher Promontory site). From 1970 to the present day, projected trends agree with tropospheric measurements, suggesting that within analytical uncertainties, a constant average emission isotope delta (δ) is a compatible scenario. The measurement uncertainty is too high to determine whether the average emission isotope δ has been affected by changes in CFC manufacturing processes or not. Our study increases the suite of trace gases amenable to direct isotope ratio measurements in small air volumes (approximately 200 mL), using a single-detector gas chromatography–mass spectrometry (GC–MS) system.
Resumo:
Primary Objectives - Describe and quantify the present strength and variability of the circulation and oceanic processes of the Nordic Seas regions using primarily observations of the long term spread of a tracer purposefully released into the Greenland Sea Gyre in 1996. - Improve our understanding of ocean processes critical to the thermaholine circulation in the Nordic Seas regions so as to be able to predict how this region may respond to climate change. - Assess the role of mixing and ageing of water masses on the carbon transport and the role of the thermohaline circulation in carbon storage using water transports and mixing coefficients derived from the tracer distribution. Specific Objectives Perform annual hydrographic, chemical and SF6 tracer surveys into the Nordic regions in order to: - Measure lateral and diapycnal mixing rates in the Greenland Sea Gyre and in the surrounding regions. - Document the depth and rates of convective mixing in the Greenland Sea using the SF6 and the water masses characteristics. - Measure the transit time and transport of water from the Greenland Sea to surrounding seas and outflows. Document processes of water mass transformation and entrainment occurring to water emanating from the central Greenland Sea. - Measure diapycnal mixing rates in the bottom and margins of the Greenland Sea basin using the SF6 signal observed there. Quantify the potential role of bottom boundary-layer mixing in the ventilation of the Greenland Sea Deep Water in absence of deep convection. Monitor the variability of the entrainment of water from the Greenland Sea using time series auto-sampler moorings at strategic positions i.e., sill of the Denmark Strait, Labrador Sea, Jan Mayen fracture zone and Fram Strait. Relate the observed variability of the tracer signal in the outflows to convection events in the Greenland Sea and local wind stress events. Obtain a better description of deepwater overflow and entrainment processes in the Denmark Strait and Faeroe Bank Channel overflows and use these to improve modelling of deepwater overflows. Monitor the tracer invasion into the North Atlantic using opportunistic SF6 measurements from other cruises: we anticipate that a number of oceanographic cruises will take place in the north-east Atlantic and the Labrador Sea. It should be possible to get samples from some cruises for SF6 measurements. Use process models to describe the spread of the tracer to achieve better parameterisation for three-dimensional models. One reason that these are so resistant to prediction is that our best ocean models are as yet some distance from being good enough, to predict climate and climate change.
Resumo:
This study presents the results of high-resolution sedimentological and clay mineralogical investigations on sediments from ODP Sites 908A and 909AlC located in the central Fram Strait. The objective was to reconstruct the paleoclimate and paleoceanography of the high northern latitudes since the middle Miocene. The sediments are characterised in particular by a distinctive input of ice-rafted material, which most probably occurs since 6 Ma and very likely since 15 Ma. A change in the source area at 1 1.2 Ma is clearly marked by variations within clay mineral composition and increasing accumulation rates. This is interpreted as a result of an increase in water mass exchange through the Fram Strait. A further period of increasing exchange between 4-3 Ma is identified by granulometric investigations and points to a synchronous intensification of deep water production in the North Atlantic during this time interval. A comparison of the components of coarse and clay fraction clearly shows that both are not delivered by the Same transport process. The input of the clay fraction can be related to transport mechanisms through sea ice and glaciers and very likely also through oceanic currents. A reconstruction of source areas for clay minerals is possible only with some restrictions. High smectite contents in middle and late Miocene sediments indicate a background signal produced by soil formation together with sediment input, possibly originating from the Greenland- Scotland Ridge. The applicability of clay mineral distribution as a climate proxy for the high northern latitudes can be confirmed. Based on a comparison of sediments from Site 909C, characterised by the smectite/illite and chlorite ratio, with regional and global climatic records (oxygen isotopes), a middle Miocene cooling phase between 14.8-14.6 Ma can be proposed. A further cooling phase between 10-9 Ma clearly shows similarities in its Progress toward drastic decrease in carbonate sedimentation and preservation in the eastern equatorial Pacific. The modification in sea water and atmosphere chemistry may represent a possible link due to the built-up of equatorial carbonate platforms. Between 4.8-4.6 Ma clay mineral distribution indicates a distinct cooling trend in the Fram Strait region. This is not accompanied by relevant glaciation, which would otherwise be indicated by the coarse fraction. The intensification of glaciation in the northern hemisphere is distinctly documented by a rapid increase of illite and chlorite starting from 3.3 Ma, which corresponds to oxygen isotope data trends from North Atlantic.
Resumo:
The causes of past changes in the global methane cycle and especially the role of marine methane hydrate (clathrate) destabilization events are a matter of debate. Here we present evidence from the North Greenland Ice Core Project ice core based on the hydrogen isotopic composition of methane [dD(CH4)] that clathrates did not cause atmospheric methane concentration to rise at the onset of Dansgaard-Oeschger (DO) events 7 and 8. Box modeling supports boreal wetland emissions as the most likely explanation for the interstadial increase. Moreover, our data show that dD(CH4) dropped 500 years before the onset of DO 8, with CH4 concentration rising only slightly. This can be explained by an early climate response of boreal wetlands, which carry the strongly depleted isotopic signature of high-latitude precipitation at that time.
Resumo:
A novel laser microparticle detector used in conjunction with continuous sample melting has provided a more than 1500 m long record of particle concentration and size distribution of the NGRIP ice core, covering continuously the period approximately from 9.5-100 kyr before present; measurements were at 1.65 m depth resolution, corresponding to approximately 35-200 yr. Particle concentration increased by a factor of 100 in the Last Glacial Maximum (LGM) compared to the Preboreal, and sharp variations of concentration occurred synchronously with rapid changes in the delta18O temperature proxy. The lognormal mode µ of the volume distribution shows clear systematic variations with smaller modes during warmer climates and coarser modes during colder periods. We find µ ~ 1.7 µm diameter during LGM and µ ~ 1.3 µm during the Preboreal. On timescales below several 100 years µ and the particle concentration exhibit a certain degree of independence present especially during warm periods, when µ generally is more variable. Using highly simplifying considerations for atmospheric transport and deposition of particles we infer that (1) the observed changes of µ in the ice largely reflect changes in the size of airborne particles above the ice sheet and (2) changes of µ are indicative of changes in long range atmospheric transport time. From the observed size changes we estimate shorter transit times by roughly 25% during LGM compared to the Preboreal. The associated particle concentration increase from more efficient long range transport is estimated to less than one order of magnitude.