982 resultados para Nonsense verses.


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All eukaryotes that have been studied to date possess the ability to detect and degrade transcripts that contain a premature signal for the termination of translation. This process of nonsense-mediated RNA decay has been most comprehensively studied in the yeast Saccharomyces cerevisiae where at least three trans-acting factors (Upf1p through Upf3P) are required. We have cloned cDNAs encoding human and murine homologues of Upf1p, termed rent1 (regulator of nonsense transcripts). Rent1 is the first identified mammalian protein that contains all of the putative functional elements in Upf1p including zinc finger-like and NTPase domains, as well as all motifs common to members of helicase superfamily I. Moreover, expression of a chimeric protein, N and C termini of Upf1p, complements the Upf1p-deficient phenotype in yeast. Thus, despite apparent differences between yeast and mammalian nonsense-mediated RNA decay, these data suggest that the two pathways use functionally related machinery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA-dependent protein kinase (DNA-PK) consists of a heterodimeric protein (Ku) and a large catalytic subunit (DNA-PKcs). The Ku protein has double-stranded DNA end-binding activity that serves to recruit the complex to DNA ends. Despite having serine/threonine protein kinase activity, DNA-PKcs falls into the phosphatidylinositol 3-kinase superfamily. DNA-PK functions in DNA double-strand break repair and V(D)J recombination, and recent evidence has shown that mouse scid cells are defective in DNA-PKcs. In this study we have cloned the cDNA for the carboxyl-terminal region of DNA-PKcs in rodent cells and identified the existence of two differently spliced products in human cells. We show that DNA-PKcs maps to the same chromosomal region as the mouse scid gene. scid cells contain approximately wild-type levels of DNA-PKcs transcripts, whereas the V-3 cell line, which is also defective in DNA-PKcs, contains very reduced transcript levels. Sequence comparison of the carboxyl-terminal region of scid and wild-type mouse cells enabled us to identify a nonsense mutation within a highly conserved region of the gene in mouse scid cells. This represents a strong candidate for the inactivating mutation in DNA-PKcs in the scid mouse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the human phosphofructokinase muscle subunit gene (PFKM) are known to cause myopathy classified as glycogenosis type VII (Tarui disease). Previously described molecular defects include base substitutions altering encoded amino acids or resulting in abnormal splicing. We report a mutation resulting in phosphofructokinase deficiency in three patients from an Ashkenazi Jewish family. Using a reverse transcription PCR assay, PFKM subunit transcripts differing by length were detected in skeletal muscle tissue of all three affected subjects. In the longer transcript, an insertion of 252 nucleotides totally homologous to the structure of the 10th intron of the PFKM gene was found separating exon 10 from exon 11. In addition, two single base transitions were identified by direct sequencing: [exon 6; codon 95; CGA (Arg) to TGA (stop)] and [exon 7; codon 172; ACC (Thr) to ACT (Thr)] in either transcript. Single-stranded conformational polymorphism and restriction enzyme analyses confirmed the presence of these point substitutions in genomic DNA and strongly suggested homozygosity for the pathogenic allele. The nonsense mutation at codon 95 appeared solely responsible for the phenotype in these patients, further expanding genetic heterogeneity of Tarui disease. Transcripts with and without intron 10 arising from identical mutant alleles probably resulted from differential pre-mRNA processing and may represent a novel message from the PFKM gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Loss of function of any one of three UPF genes prevents the accelerated decay of nonsense mRNAs in Saccharomyces cerevisiae. We report the identification and DNA sequence of UPF3, which is present in one nonessential copy on chromosome VII. Upf3 contains three putative nuclear localization signal sequences, suggesting that it may be located in a different compartment than the cytoplasmic Upf1 protein. Epitope-tagged Upf3 (FLAG-Upf3) does not cofractionate with polyribosomes or 80S ribosomal particles. Double disruptions of UPF1 and UPF3 affect nonsense mRNA decay in a manner indistinguishable from single disruptions. These results suggest that the Upf proteins perform related functions in a common pathway.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: