963 resultados para Non isothermal kinetic


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The primary aim of these investigations was to probe the elecnuchemical and material science aspects of some selected metal phthalocyanines(MPcs).Metal phthalocyanines are characterised by a unique planar molecular structure. As a single class of compounds they have been the subject of ever increasing number of physicochemical and technological investigations. During the last two decades the literature on these compounds was flooded by an outpour of original publications and patents. Almost every branch of materials science has benefited by their application-swface coating, printing, electrophotography, photoelectrochemistry, electronics and medicine to name a few.The present study was confined to the electrical and electrochemical properties of cobalt, nickel, zinc. iron and copper phthalocyanines. The use of soluble Pes as corrosion inhibitor for aluminium was also investigated.In the introductory section of the thesis, the work done so far on MPcs is reviewed. In this review emphasis is given to their general methods of synthesis and the physicochemical properties.In phthalocyanine chemistry one of the formidable tasks is the isolation of singular species. In the second chapter the methods of synthesis and purification are presented with necessary experimental details.The studies on plasma modified films of CoPe, FePc, ZnPc. NiPc and CuPc are also presented.Modification of electron transfer process by such films for reversible redox systems is taken as the criterion to establish enhanced electrocatalytic activity.Metal phthalocyanines are p- type semiconductors and the conductivity is enhanced by doping with iodine. The effect of doping on the activation energy of the conduction process is evaluated by measuring the temperature dependent variation of conductivity. Effect of thennal treatment on iodine doped CoPc is investigated by DSC,magnetic susceptibility, IR, ESR and electronic spectra. The elecnucatalytic activity of such doped materials was probed by cyclic voltammetry.The electron transfer mediation characteristics of MPc films depend on the film thickness. The influence of reducing the effective thickness of the MPc film by dispersing it into a conductive polymeric matrix was investigated. Tetrasulphonated cobalt phthalocyanine (CoTSP) was electrostatically immobilised into polyaniline and poly(o-toluidine) under varied conditions.The studies on corrosion inhibition of aluminium by CoTSP and CuTSP and By virtue of their anionic character they are soluble in water and are strongly adsorbed on aluminium. Hence they can act as corrosion inhibitors. CoTSP is also known to catalyze the reduction of dioxygen.This reaction can accelerate the anodic dissolution of metal as a complementary reaction. The influence of these conflicting properties of CoTSP on the corrosion of aluminium was studied and compared with those of CuTSP.In the course of these investigations a number of gadgets like cell for measuring the electrical conductivity of solids under non-isothermal conditions, low power rf oscillator and a rotating disc electrode were fabricated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The kinetics of the title reactions have been studied by relative-rate methods as a function of temperature. Relative-rate coefficients for the two decomposition channels of 2-methyl-2-butoxyl have been measured at five different temperatures between 283 and 345 K and the observed temperature dependence is consistent with the results of some previous experimental studies. The kinetics of the two decomposition channels of 2-methyl-2-pentoxyl have also been investigated, as a function of temperature, relative to the estimated rate of isomerisation of this radical. Room-temperature rate coefficient data for the two decomposition channels of both 2-methyl-2-pentoxyl and 2-methyl-2-butxoyl (after combining the relative rate coefficient for this latter with a value for the rate coefficient of the major channel, extrapolated from the data presented by Batt et al., Int. J. Chem. Kinet., 1978, 10, 931) are shown to be consistent with a non-linear kinetic correlation, for alkoxyl radical decomposition rate data, previously presented by this laboratory (Johnson et al., Atmos. Environ., 2004, 38, 1755-1765).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The submerged entry nozzle (SEN) is used to transport the molten steel from a tundish to a mould. The main purpose of its usage is to prevent oxygen and nitrogen pick-up by molten steel from the gas. Furthermore, to achieve the desired flow conditions in the mould. Therefore, the SEN can be considered as a vital factor for a stable casting process and the steel quality. In addition, the steelmaking processes occur at high temperatures around 1873 K, so the interaction between the refractory materials of the SEN and molten steel is unavoidable. Therefore, the knowledge of the SEN behaviors during preheating and casting processes is necessary for the design of the steelmaking processes  The internal surfaces of modern SENs are coated with a glass/silicon powder layer to prevent the SEN graphite oxidation during preheating. The effects of the interaction between the coating layer and the SEN base refractory materials on clogging were studied. A large number of accretion samples formed inside alumina-graphite clogged SENs were examined using FEG-SEM-EDS and Feature analysis. The internal coated SENs were used for continuous casting of stainless steel grades alloyed with Rare Earth Metals (REM). The post-mortem study results clearly revealed the formation of a multi-layer accretion. A harmful effect of the SENs decarburization on the accretion thickness was also indicated. In addition, the results indicated a penetration of the formed alkaline-rich glaze into the alumina-graphite base refractory. More specifically, the alkaline-rich glaze reacts with graphite to form a carbon monoxide gas. Thereafter, dissociation of CO at the interface between SEN and molten metal takes place. This leads to reoxidation of dissolved alloying elements such as REM (Rare Earth Metal). This reoxidation forms the “In Situ” REM oxides at the interface between the SEN and the REM alloyed molten steel. Also, the interaction of the penetrated glaze with alumina in the SEN base refractory materials leads to the formation of a high-viscous alumina-rich glaze during the SEN preheating process. This, in turn, creates a very uneven surface at the SEN internal surface. Furthermore, these uneven areas react with dissolved REM in molten steel to form REM aluminates, REM silicates and REM alumina-silicates. The formation of the large “in-situ” REM oxides and the reaction of the REM alloying elements with the previously mentioned SEN´s uneven areas may provide a large REM-rich surface in contact with the primary inclusions in molten steel. This may facilitate the attraction and agglomeration of the primary REM oxide inclusions on the SEN internal surface and thereafter the clogging. The study revealed the disadvantages of the glass/silicon powder coating applications and the SEN decarburization. The decarburization behaviors of Al2O3-C, ZrO2-C and MgO-C refractory materials from a commercial Submerged Entry Nozzle (SEN), were also investigated for different gas atmospheres consisting of CO2, O2 and Ar. The gas ratio values were kept the same as it is in a propane combustion flue gas at different Air-Fuel-Ratio (AFR) values for both Air-Fuel and Oxygen-Fuel combustion systems. Laboratory experiments were carried out under nonisothermal conditions followed by isothermal heating. The decarburization ratio (α) values of all three refractory types were determined by measuring the real time weight losses of the samples. The results showed the higher decarburization ratio (α) values increasing for MgO-C refractory when changing the Air-Fuel combustion to Oxygen-Fuel combustion at the same AFR value. It substantiates the SEN preheating advantage at higher temperatures for shorter holding times compared to heating at lower temperatures during longer holding times for Al2O3-C samples. Diffusion models were proposed for estimation of the decarburization rate of an Al2O3-C refractory in the SEN. Two different methods were studied to prevent the SEN decarburization during preheating: The effect of an ZrSi2 antioxidant and the coexistence of an antioxidant additive and a (4B2O3 ·BaO) glass powder on carbon oxidation for non-isothermal and isothermal heating conditions in a controlled atmosphere. The coexistence of 8 wt% ZrSi2 and 15 wt% (4B2O3 ·BaO) glass powder of the total alumina-graphite refractory base materials, presented the most effective resistance to carbon oxidation. The 121% volume expansion due to the Zircon formation during heating and filling up the open pores by a (4B2O3 ·BaO) glaze during the green body sintering led to an excellent carbon oxidation resistance. The effects of the plasma spray-PVD coating of the Yttria Stabilized Zirconia (YSZ) powder on the carbon oxidation of the Al2O3-C coated samples were investigated. Trials were performed at non-isothermal heating conditions in a controlled atmosphere. Also, the applied temperature profile for the laboratory trials were defined based on the industrial preheating trials. The controlled atmospheres consisted of CO2, O2 and Ar. The thicknesses of the decarburized layers were measured and examined using light optic microscopy, FEG-SEM and EDS. A 250-290 μm YSZ coating is suggested to be an appropriate coating, as it provides both an even surface as well as prevention of the decarburization even during heating in air. In addition, the interactions between the YSZ coated alumina-graphite refractory base materials in contact with a cerium alloyed molten stainless steel were surveyed. The YSZ coating provided a total prevention of the alumina reduction by cerium. Therefore, the prevention of the first clogging product formed on the surface of the SEN refractory base materials. Therefore, the YSZ plasma-PVD coating can be recommended for coating of the hot surface of the commercial SENs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This master thesis aims at developing a new methodology for thermochemical degradation of dry coconut fiber (dp = 0.25mm) using laboratory rotating cylinder reactor with the goal of producing bio-oil. The biomass was characterized by infrared spectroscopy with Fourier transform FTIR, thermogravimetric analysis TG, with evaluation of activation energy the in non-isothermal regime with heating rates of 5 and 10 °C/min, differential themogravimetric analysis DTG, sweeping electron microscopy SEM, higher heating value - HHV, immediate analysis such as evaluated all the amounts of its main constituents, i.e., lignin, cellulose and hemicelluloses. In the process, it was evaluated: reaction temperature (450, 500 and 550oC), carrier gas flow rate (50 and 100 cm³/min) and spin speed (20 and 25 Hz) to condensate the bio-oil. The feed rate of biomass (540 g/h), the rotation of the rotating cylinder (33.7 rpm) and reaction time (30 33 min) were constant. The phases obtained from the process of pyrolysis of dry coconut fiber were bio-oil, char and the gas phase non-condensed. A macroscopic mass balance was applied based on the weight of each phase to evaluate their yield. The highest yield of 20% was obtained from the following conditions: temperature of 500oC, inert gas flow of 100 cm³/min and spin speed of 20 Hz. In that condition, the yield in char was 24.3%, non-condensable gas phase was 37.6% and losses of approximately 22.6%. The following physicochemical properties: density, viscosity, pH, higher heating value, char content, FTIR and CHN analysis were evaluated. The sample obtained in the best operational condition was subjected to a qualitative chromatographic analysis aiming to know the constituents of the produced bio-oil, which were: phenol followed by sirigol, acetovanilona and vinyl guaiacol. The solid phase (char) was characterized through an immediate analysis (evaluation of moisture, volatiles, ashes and fixed carbon), higher heating value and FTIR. The non-condensing gas phase presented as main constituents CO2, CO and H2. The results were compared to the ones mentioned by the literature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper a non-isothermal two-phase model for oil-R134a refrigerant mixture flow is presented to predict the R134a leakage through the radial clearance of rolling piston compressors. The flow is divided in a liquid single-phase region and in a two-phase region, in which the homogeneous model is used to simulate the flow. The refrigerant leakage is determined using the mixture mass flow rate and the refrigerant mass fraction variation along the flow. The results are obtained for inlet pressures varying from 200 to 700 kPa, inlet temperatures ranging from 40 to 60 degrees C, and minimal clearances between 10 and 60 mu m. The results are firstly compared to existing isothermal model data, showing that there is a significant difference between the leakage flow rates predicted by isothermal and non-isothermal models. Finally, a useful general equation for compressor designers is proposed to calculate the refrigerant leakage for a large range of operation conditions. (C) 2012 Elsevier Ltd and IIR. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In last years it has talked a lot about the environment and the plastic waste produced and discarded. In last decades, the increasing development of research to obtain fuel from plastic material, by catalytic degradation, it has become a very attractive looking, as these tailings are discarded to millions worldwide. These materials take a long time to degrade themselves by ways said natural and burning it has not demonstrated a viable alternative due to the toxic products produced during combustion. Such products could bring serious consequences to public health and environment. Therefore, the technique of chemical recycling is presented as a suitable alternative, especially since could be obtain fractions of liquid fuels that can be intended to the petrochemical industry. This work aims to propose alternatives to the use of plastic waste in the production of light petrochemical. Zeolites has been widely used in the study of this process due to its peculiar structural properties and its high acidity. In this work was studied the reaction of catalytic degradation of high-density polyethylene (HDPE) in the presence HZSM-12 zeolites with different acid sites concentrations by thermogravimetry and pyrolysis coupled with GC-MS. The samples of the catalysts were mixed with HDPE in the proportion of 50% in mass and submitted to thermogravimetric analyses in several heating rates. The addition of solids with different acid sites concentrations to HDPE, produced a decrease in the temperature of degradation of the polymer proportional the acidity of the catalyst. These qualitative results were complemented by the data of activation energy obtained through the non-isothermal kinetics model proposed by Vyazovkin. The values of Ea when correlated to the data of surface acidity of the catalysts indicated that there is a exponential decrease of the energy of activation in the reaction of catalytic degradation of HDPE, in function of the concentration of acid sites of the materials. These results indicate that the acidity of the catalyst added to the system is one of the most important properties in the reaction of catalytic degradation of polyethylene

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Non-isothermal dielectric analysis (DEA) and differential scanning calorimetry (DSC) techniques were used to study the epoxy nanocomposites prepared by reacting 1,3,5,7,9,11,13,15-octa[dimethylsiloxypropylglycidylether] pentaciclo [9.5.1.1(3,9).1(5,15).1(7,13)] octasilsesquioxane (ODPG) with methylenedianiline (MDA). Loss factor (epsilon) and activation energy were calculated by DEA. The relationships between the loss factor, the activation energy, the structure of the network, and the mechanical properties were investigated. Activation energies determined by DEA and DSC, heat of polymerization, fracture toughness and tensile modulus show the same profile for mechanical properties with respect to ODPG content.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Ag precipitation and dissolution reactions in the Cu-3 wt.% Al-4 wt.% Ag alloy were studied using isothermal and non-isothermal analyses. The activation energy values, obtained for the Ag precipitation reaction indicated that, when the Kissinger, Ozawa and Johnson-MehI-Avrami methods are compared, the Kissinger method is the most appropriate. Although the Johnson-Mehl-Avrami equation often does not fit precipitation data, the energy values obtained for Ag precipitation kinetics are in agreement with what was experimentally observed. For the dissolution reaction of Ag precipitates the activation energy values obtained from the Kissinger and Ozawa methods are higher than that found in the literature for the Ag dissolution in Cu. This discrepancy seems to be related to the fact that the activation energy is influenced by the heating rate. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The eutectoid transformation may be defined as a solid-state diffusion-controlled decomposition process of a high-temperature phase into a two-phase lamellar aggregate behind a migrating boundary on cooling below the eutectoid temperature. In substitutional solid solutions, the eutectoid reaction involves diffusion of the solute atoms either through the matrix or along the boundaries or ledges. The effect of Ag on the non-isothermal kinetics of the reverse eutectoid reaction in the Cu-9 mass%Al, Cu-10 mass%Al, and Cu-11 mass%Al alloys were studied using differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The activation energy for this reaction was obtained using the Kissinger and Ozawa methods. The results indicated that Ag additions to Cu-Al alloys interfere on the reverse eutectoid reaction, increasing the activation energy values for the Cu-9 mass%Al and Cu-10 mass%Al alloys and decreasing these values for the Cu-11 mass%Al alloy for additions up to 6 mass%Ag. The changes in the activation energy were attributed to changes in the reaction solute and in Ag solubility due to the increase in Al content.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work the influence of Ag additions on the thermal behavior of the Cu-11 mass% Al alloy was studied using differential scanning calorimetry, in situ X-ray diffractometry and scanning electron microscopy. The results indicated that changes in the heating rate shift the peak attributed to alpha phase formation to higher temperatures, evidencing the diffusive character of this reaction. The activation energy value for the alpha phase formation reaction, obtained from a non-isotherm kinetic model, is close to that corresponding to Cu atoms self diffusion, thus confirming that this reaction is dominated by Cu atoms diffusion through the martensite matrix.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work the (alpha + gamma(1)) complex phase formation reaction in the Cu-10mass% Al-6mass% Ag alloy was studied using Differential Scanning Calorimetry (DSC), Differential Thermodilatometry (DTD), X-ray diffractometry (XRD), Optical (OM) and Scanning Electron Microscopies (SEM). The results indicated the presence of two different processes, related to a change in the Ag diffusion route from the alpha matrix to the (alpha + gamma(1)) complex phase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ