161 resultados para Nitrile hydratase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mainly based on various inhibitor studies previously performed, amidases came to be regarded as sulfhydryl enzymes. Not completely satisfied with this generally accepted interpretation, we performed a series of site-directed mutagenesis studies on one particular amidase of Rhodococcus rhodochrous J1 that was involved in its nitrile metabolism. For these experiments, the recombinant amidase was produced as the inclusion body in Escherichia coli to greatly facilitate its recovery and subsequent purification. With regard to the presumptive active site residue Cys203, a Cys203 → Ala mutant enzyme still retained 11.5% of the original specific activity. In sharp contrast, substitutions in certain other positions in the neighborhood of Cys203 had a far more dramatic effect on the amidase. Glutamic acid substitution of Asp191 reduced the specific activity of the mutant enzyme to 1.33% of the wild-type activity. Furthermore, Asp191 → Asn substitution as well as Ser195 → Ala substitution completely abolished the specific activity. It would thus appear that, among various conserved residues residing within the so-called signature sequence common to all amidases, the real active site residues are Asp191 and Ser195 rather than Cys203. Inasmuch as an amide bond (CO-NH2) in the amide substrate is not too far structurally removed from a peptide bond (CO-NH-), the signature sequences of various amidases were compared with the active site sequences of various types of proteases. It was found that aspartic acid and serine residues corresponding to Asp191 and Ser195 of the Rhodococcus amidase are present within the active site sequences of aspartic proteinases, thus suggesting the evolutionary relationship between the two.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peroxisome proliferators cause rapid and coordinated transcriptional activation of genes encoding peroxisomal beta-oxidation system enzymes by activating peroxisome proliferator-activated receptor (PPAR) isoform(s). Since the thyroid hormone (T3; 3,3',5-triiodothyronine) receptor (TR), another member of the nuclear hormone receptor superfamily, regulates a subset of fatty acid metabolism genes shared with PPAR, we examined the possibility of interplay between peroxisome proliferator and T3 signaling pathways. T3 inhibited ciprofibrate-induced luciferase activity as well as the endogenous peroxisomal beta-oxidation enzymes in transgenic mice carrying a 3.2-kb 5'-flanking region of the rat peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase gene fused to the coding region of luciferase. Transfection assays in hepatoma H4-II-E-C3 and CV-1 cells indicated that this inhibition is mediated by TR in a ligand-dependent fashion. Gel shift assays revealed that modulation of PPAR action by TR occurs through titration of limiting amounts of retinoid X receptor (RXR) required for PPAR activation. Increasing amounts of RXR partially reversed the inhibition in a reciprocal manner; PPAR also inhibited TR activation. Results with heterodimerization-deficient TR and PPAR mutants further confirmed that interaction between PPAR and TR signaling systems is indirect. These results suggest that a convergence of the peroxisome proliferator and T3 signaling pathways occurs through their common interaction with the heterodimeric partner RXR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal decomposition of flexible polyurethane foam (FPUF) was studied under nitrogen and air atmospheres at 550 °C and 850 °C using a laboratory scale reactor to analyse the evolved products. Ammonia, hydrogen cyanide and nitrile compounds were obtained in high yields in pyrolysis at the lower temperature, whereas at 850 °C polycyclic aromatic hydrocarbons (PAHs) and other semivolatile compounds, especially compounds containing nitrogen (benzonitrile, aniline, quinolone and indene) were the most abundant products. Different behaviour was observed in the evolution of polychlorodibenzo-p-dioxins and furans (PCDD/Fs) at 550 °C and 850 °C. At 550 °C, the less chlorinated congeners, mainly PCDF, were more abundant. Contrarily, at 850 °C the most chlorinated PCDD were dominant. In addition, the total yields of PCDD/Fs in the pyrolysis and combustion runs at 850 °C were low and quite similar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several copolymers of linear polystyrene were prepared for evaluation as soluble polymeric supports for organic synthesis. These polymers were utilized for the synthesis of ?2-isoxazoline compounds. The target compounds were synthesized via 1,3-dipolar cycloaddition reactions between polymer bound alkenes and nitrile oxides generated in situ from their corresponding aldoximes. The cleaved ?2-isoxazoline compounds were tested for biological activity against Mycobacterium fortuitum. To compare the success of these linear polystyrene copolymers, some of the ?2-isoxazoline compounds synthesized on soluble polymeric supports were also prepared via traditional crosslinked polymer supports. The polymer-bound ?2-isoxazolines were also tested for antimicrobial activity. In addition attempts were made to prepare polymers containing the ?2-isoxazolines but anchored by non-hydrolysable bonds. Although the copolymers of polystyrene gave good loading capacity in mmol/g, and being soluble in chlorinated solvents it was possible to monitor the reactions by 1H NMR spectroscopy, the cleavage of the polymer bound products proved to be quite troublesome. Product purification was not as straightforward as it was anticipated. Isolation of the cleaved target compounds proved to be time consuming and laborious when compared to the traditional organic synthesis and solid phase organic synthesis (SPOS). Polymer-bound ?2-isoxazolines close to the polymer backbone exhibited some biological activity against Staphylococcus aureus. Polymers with substitution at the para-position of the aryl substituent at position 3 of isoxazoline ring showed antimicrobial activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis covers both experimental and computer investigations into the dynamic behaviour of mechanical seals. The literature survey shows no investigations on the effect of vibration on mechanical seals of the type common in the various process industries. Typical seal designs are discussed. A form of Reynolds' equation has been developed that permits the calculation of stiffnesses and damping coefficients for the fluid film. The dynamics of the mechanical seal floating ring have been investigated using approximate formulae, and it has been shown that the floating ring will behave as a rigid body. Some elements, such as the radial damping due to the fluid film, are small and may be neglected. The equations of motion of the floating ring have been developed utilising the significant elements, and a solution technique described. The stiffness and damping coefficients of nitrile rubber o-rings have been obtained. These show a wide variation, with a constant stiffness up to 60 Hz. The importance of the effect of temperature on the properties is discussed. An unsuccessful test rig is described in the appendices. The dynamic behaviour of a mechanical seal has been investigated experimentally, including the effect of changes of speed, sealed pressure and seal geometry. The results, as expected, show that high vibration levels result in both high leakage and seal temperatures. Computer programs have been developed to solve Reynolds' Equation and the equations of motion. Two solution techniques for this latter program were developed, the unsuccesful technique is described in the appendices. Some stability problems were encountered, but despite these the solution shows good agreement with some of the experimental conditions. Possible reasons for the discrepancies are discussed. Various suggestions for future work in this field are given. These include the combining of the programs and more extensive experimental and computer modelling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapidly rising world populations have sparked growing concerns over global food production to meet this increasing demand. Figures released by The World Bank suggest that a 50 % increase in worldwide cereal production is required by 2030. Primary amines are important intermediates in the synthesis of a wide variety of fine chemicals utilised within the agrochemical industry, and hence new 'greener' routes to their low cost manufacture from sustainable resources would permit significantly enhanced crop yields. Early synthetic pathways to primary amines employed stoichiometric (and often toxic) reagents via multi-step protocols, resulting in a large number of by-products and correspondingly high Environmental factors of 50-100 (compared with 1-5 for typical bulk chemicals syntheses). Alternative catalytic routes to primary amines have proven fruitful, however new issues relating to selectivity and deactivation have slowed commercialisation. The potential of heterogeneous catalysts for nitrile hydrogenation to amines has been demonstrated in a simplified reaction framework under benign conditions, but further work is required to improve the atom economy and energy efficiency through developing fundamental insight into nature of the active species and origin of on-stream deactivation. Supported palladium nanoparticles have been investigated for the hydrogenation of crotononitrile to butylamine (Figure 1) under favourable conditions, and the impact of reaction temperature, hydrogen pressure, support and loading upon activity and selectivity to C=C versus CºN activation assessed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brassicales species rich in glucosinolates are used for biofumigation, a process based on releasing enzymatically toxic isothiocyanates into the soil. These hydrolysis products are volatile and often reactive compounds. Moreover, glucosinolates can be degraded also without the presence of the hydrolytic enzyme myrosinase which might contribute to bioactive effects. Thus, in the present study the stability of Brassicaceae plant-derived and pure glucosinolates hydrolysis products was studied using three different soils ( model biofumigation). In addition, the degradation of pure 2-propenyl glucosinolate was investigated with special regard to the formation of volatile breakdown products. Finally, the influence of pure glucosinolate degradation on the bacterial community composition was evaluated using denaturing gradient gel electrophoresis of 16S rRNA gene amplified from total community DNA. The model biofumigation study revealed that the structure of the hydrolysis products had a significant impact on their stability in the soil but not the soil type. Following the degradation of pure 2-propenyl glucosinolate in the soils, the nitrile as well as the isothiocyanate can be the main degradation products, depending on the soil type. Furthermore, the degradation was shown to be both chemically as well as biologically mediated as autoclaving reduced degradation. The nitrile was the major product of the chemical degradation and its formation increased with iron content of the soil. Additionally, the bacterial community composition was significantly affected by adding pure 2-propenyl glucosinolate, the effect being more pronounced than in treatments with myrosinase added to the glucosinolate. Therefore, glucosinolates can have a greater effect on soil bacterial community composition than their hydrolysis products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite their promising properties, phosphonium based ionic liquids have attracted little attention as compared to their nitrogen-based cation counterparts. This study focuses on the properties of a family of small phosphonium imide ionic liquids, as well as the effect of lithium salt addition to these. The 6 ionic liquids were either alkyl, cyclic or nitrile functionalised phoshonium cations with bis(trifluoromethanesulfonyl)imide, NTf2, or bis(fluorosulfonyl)imide (FSI) as anion. Amongst the properties investigated were ionic conductivity, viscosity, thermal behaviour, electrochemical stability and the reversibility of electrochemical lithium cycling. All ionic liquids showed very promising properties e.g. having low transition temperatures, high electrochemical stabilities, low viscosities and high conductivities. Particularly the trimethyl phosphonium ionic liquids showed some of the highest conductivities reported amongst phosphonium ionic liquids generally. The combination of electrochemical stability, high conductivity and reversible lithium cycling makes them promising systems for energy storage devices such as lithium batteries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ce mémoire traite de la chimie des complexes pinceurs de nickel (II) cationiques ayant un ligand de type POCOP. Elle se divise en deux parties. La première traite de la synthèse, de la caractérisation et de la réactivité des complexes cationiques pinceurs de Ni(II) de type POCOP (POCOP = 1,3-bis(phosphinitobenzene), où C fait partie d’un cycle benzénique et est lié au métal, et P est un ligand phosphoré aussi lié au métal). Ces complexes ont un ligand acétonitrile coordonné au centre métallique et sont du type [(R-POCOPR’)Ni(NCMe)][OSO2CF3], où R est un substituant du cycle benzénique et R’ est un substituant sur le ligand phosphoré (R’ = iPr: R = H (1), p-Me(2), p-OMe(3), p-CO2Me(4), p-Br(5), m,m-tBu2(6), m-OMe(7), m-CO2Me(8); R’ = t-Bu : R = H (9), p-CO2Me(10)). Les complexes cationiques sont préparés en faisant réagir le dérivé Ni(II) neutre correspondant R-(POCOPR’)Ni-Br avec Ag(OSO2CF3¬) dans l’acétonitrile à température ambiante. L’impact des groupements R et R’ du ligand POCOP sur la structure et sur les propriétées électroniques du complexe a été étudié par spectroscopies RMN, UV-VIS et IR, analyse électrochimique, et diffraction des rayons X. Les valeurs de fréquence du lien C≡N (ν(C≡N)) augmentent avec le caractère électroattracteur du complexe, dans l’ordre 7 < 3 ~ 2 ~ 6 < 1 < 5 ~ 8 < 4 et 9 < 10. Ces résultats sont en accord avec le fait qu’une augmentation du caractère électrophile du centre métallique devrait résulter en une augmentation de la donation σ MeCN→Ni. De plus, les complexes cationiques montrent tous un potentiel d’oxydation Ni(II)/Ni(III) plus élevé que leurs analogues neutres Ni-Br. Ensuite, une étude d’équilibre entre un complexe neutre (R-POCOPR’)NiBr et un complexe cationique [(R-POCOPR’)Ni(NCMe)][OSO2CF3] démontre l’échange facile des ligands MeCN et Br. La deuxième partie de ce mémoire consiste en deux chapitres. Le premier (Chapitre 3) est une étude structurelle permettant une meilleure compréhension du mécanisme d’hydroamination des oléfines activées promue par les complexes présentés au chapitre 1, suivi de tentatives de synthèse de nouveaux composés POCOP cationiques comportant un ligand amine et nitrile, et de déplacement du groupement amine par un groupement nitrile. Le deuxième chapitre (4) décrit la réactivité et la cinétique de la réaction d’hydroamination et d’hydroalkoxylation d’oléfines activées, qui permet ainsi de mieux comprendre l’impact des différentes variables du système (groupements R et R’, température, substrats, solvent, etc.) sur la réactivité catalytique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ce mémoire traite de la chimie des complexes pinceurs de nickel (II) cationiques ayant un ligand de type POCOP. Elle se divise en deux parties. La première traite de la synthèse, de la caractérisation et de la réactivité des complexes cationiques pinceurs de Ni(II) de type POCOP (POCOP = 1,3-bis(phosphinitobenzene), où C fait partie d’un cycle benzénique et est lié au métal, et P est un ligand phosphoré aussi lié au métal). Ces complexes ont un ligand acétonitrile coordonné au centre métallique et sont du type [(R-POCOPR’)Ni(NCMe)][OSO2CF3], où R est un substituant du cycle benzénique et R’ est un substituant sur le ligand phosphoré (R’ = iPr: R = H (1), p-Me(2), p-OMe(3), p-CO2Me(4), p-Br(5), m,m-tBu2(6), m-OMe(7), m-CO2Me(8); R’ = t-Bu : R = H (9), p-CO2Me(10)). Les complexes cationiques sont préparés en faisant réagir le dérivé Ni(II) neutre correspondant R-(POCOPR’)Ni-Br avec Ag(OSO2CF3¬) dans l’acétonitrile à température ambiante. L’impact des groupements R et R’ du ligand POCOP sur la structure et sur les propriétées électroniques du complexe a été étudié par spectroscopies RMN, UV-VIS et IR, analyse électrochimique, et diffraction des rayons X. Les valeurs de fréquence du lien C≡N (ν(C≡N)) augmentent avec le caractère électroattracteur du complexe, dans l’ordre 7 < 3 ~ 2 ~ 6 < 1 < 5 ~ 8 < 4 et 9 < 10. Ces résultats sont en accord avec le fait qu’une augmentation du caractère électrophile du centre métallique devrait résulter en une augmentation de la donation σ MeCN→Ni. De plus, les complexes cationiques montrent tous un potentiel d’oxydation Ni(II)/Ni(III) plus élevé que leurs analogues neutres Ni-Br. Ensuite, une étude d’équilibre entre un complexe neutre (R-POCOPR’)NiBr et un complexe cationique [(R-POCOPR’)Ni(NCMe)][OSO2CF3] démontre l’échange facile des ligands MeCN et Br. La deuxième partie de ce mémoire consiste en deux chapitres. Le premier (Chapitre 3) est une étude structurelle permettant une meilleure compréhension du mécanisme d’hydroamination des oléfines activées promue par les complexes présentés au chapitre 1, suivi de tentatives de synthèse de nouveaux composés POCOP cationiques comportant un ligand amine et nitrile, et de déplacement du groupement amine par un groupement nitrile. Le deuxième chapitre (4) décrit la réactivité et la cinétique de la réaction d’hydroamination et d’hydroalkoxylation d’oléfines activées, qui permet ainsi de mieux comprendre l’impact des différentes variables du système (groupements R et R’, température, substrats, solvent, etc.) sur la réactivité catalytique.