993 resultados para Niagara on the Lake, Ontario
Resumo:
Tephra horizons are potentially perfect time markers for dating and cross-correlation among diverse Holocene palaeoenvironmental records such as ice cores and marine and terrestrial sequences, but we need to trust their age. Here we present a new age estimate of the Holocene Mjauvotn tephra A using accelerator mass spectrometry C-14 dates from two lakes on the Faroe Islands. With Bayesian age modelling it is dated to 6668-6533 cal. a BP (68.2% confidence interval) - significantly older and better constrained than the previous age. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Dissertação de mestrado, Ecohidrologia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
This qualitative study explored secondary teachers' perceptions of scheduling in relation to pedagogy, curriculum, and observation of student learning. Its objective was to determine the best way to organize the scheduling for the delivery of Ontario's new 4-year curriculum. Six participants were chosen. Two were teaching in a semestered timetable, 1 in a traditional timetable, and 3 had experience in both schedules. Participants related a pressure cooker "lived experience" with weaker students in the semester system experiencing a particularly harsh environment. The inadequate amount of time for review in content-heavy courses, gap scheduling problems, catch-up difficulties for students missing classes, and the fast pace of semestering are identified as factors negatively impacting on these students. Government testing adds to the pressure by shifting teachers' time and attention in the classroom from deeper learning to a superficial coverage of material, from curriculum as lived to curriculum as text to be covered. Scheduling choice should be available in public education to accommodate the needs of all students. Curriculum guidelines need to be revamped to reflect the content that teachers believe is necessary for a successful course delivery. Applied level courses need to be developed for students who are not academically inferior but learn differently.
Resumo:
The present study was carried out to test the hypothesis that photosynthetic bacteria contribute a large portion of the food of filter feeding zooplankton populations in Crawford Lake, Ontario. The temporal and spatial variations of both groups of organisms are strongly dependent on one another. 14 By using C-Iabelled photosynthetic bacteria. the ingestion and clearance rates of Daphnia pulex, ~. rosea, and Keratella spp were estimated during summer and fall of 1982. These quantitative estimations of zooplankton ingestion and clearence rates on photosynthetic bacteria comprised an original addition to the literature. Photosynthetic bacteria comprised a substantial portion of the diet of all four dominant zooplankton species. The evidence for this is based on the ingestion and clearance rates of the dominant zooplankton species. Ingestion rates of D. pulex and D. rosea ranged 5 5 -1 -1 - -- 5 - -- 5 from 8.3X10 -1 to 14.6XlO -1 cells.ind. hr and 8.1X10 to 13.9X10 cells.ind. hr • Their clearance rates ranged from 0.400 to 1.000 -1 -1 -1 -1 ml.ind. hr. and 0.380 to 0.930 ml.ind. hr • The ingestion and clearance -1 -1 -1 -1 rates of Keratella spp were 600 cell.ind. hr and 0.40 ul.ind. hr respectively. Clearance rates were inversely proportional to the concentration of food cells and directly proportional to the body size of the animals. It is believed that despite the very short reg~neration times of photosynthetic bacteria (3-8 hours) their population densities were controlled in part by the feeding rates of the dominant zooplankton in Crawford Lake. By considering the regeneration times of photosynthetic bacteria and the population clearance rates of zooplankton, it was estimated that between 16 to 52% and 11 to 35% of the PHotosynthetic bacteria were' consumed· by Daphnia· pulex. and Q.. rosea per day. The temporal and spatial distribution of Daphnia pulex, !.. rosea, Keratella quadrata, K. coChlearis and photosynthetic bacteria in Crawford Lake were also investigated during the period of October, 1981 to December, 1982. The photosynthetic bacteria in the lake, constituted a major food source for only those zooplankton Which tolerate anaerobic conditions. Changes in temperature and food appeared to correlate with the seasonal changes in zooplankton density. All four dominant species of zooplankton were abundant at the lake's surface (O-4m) during winter and spring and moved downwards with the thermocline as summer stratification proceeded. Photosynthetic bacteria formed a 2 m thick layer at the chemocline. The position of this photosynthetic bacterial J-ayer changed seasonally. In the summer, the bacterial plate moved upwards and following fall mixing it moved downwards. A vertical shift of O.8m (14.5 to 15.3m) was recorded during the period of June to December. The upper limit of the photosynthetic bacteria in the water column was controlled by dissolved oxygen, and sulfide concentrations While their lower limit was controlled by light intensity. A maximum bacterio- 1 chlorophyll concentration of 81 mg Bchl.l was recorded on August 9, 1981. The seasonal distribution of photosynthetic bacteria was controlledinpart' by ·theg.-"z1ai'_.Q;~.zoopl. ank:tCm;-.Qther -ciactors associated with zooplankton grazing were oxygen and sulfide concentrations.
Resumo:
The effect that plants {Typha latifolia) as well as root-bed medium physical and chemical characteristics have on the treatment of primary treated domestic wastewater within a vertical flow constructed wetland system was investigated. Five sets of cells, with two cells in each set, were used. Each cell was made of concrete and measured 1 .0 m X 1 .0 m and was 1.3 m deep. Four different root-bed media were tested : Queenston Shale, Fonthill Sand, Niagara Shale and a Michigan Sand. Four of the sets contained plants and a single type of root-bed medium. The influence of plants was tested by operating a Queenston Shale set without plants. Due to budget constraints no replicates were constructed. All of the sets were operated independently and identically for twenty-eight months. Twelve months of data are presented here, collected after 16 months of continuous operation. Root-bed medium type did not influence BOD5 removal. All of the sets consistently met Ontario Ministry of Environment (MOE) requirements (<25 mg/L) for BOD5 throughout the year. The 12 month average BOD5 concentration from all sets with plants was below 2.36 mg/L. All of the sets were within MOE discharge requirements (< 25 mg/L) for suspended solids with set effluent concentrations ranging from 1.53 to 14.80 mg/L. The Queenston Shale and Fonthill Sand media removed the most suspended solids while the Niagara Shale set produced suspended solids. The set containing Fonthill Sand was the only series to meet MOE discharge requirements (< Img/L) for total phosphorus year-round with a twelve month mean effluent concentration of 0.23 mg/L. Year-round all of the root-bed media were well below MOE discharge requirements (< 20mg/L in winter and < 10 mg/L in sumnner) for ammonium. The Queenston Shale and Fonthill Sand sets removed the most total nitrogen. Plants had no effect on total nitrogen removal, but did influence how nitrogen was cycled within the system. Plants increased the removal of suspended solids by 14%, BOD5 by 10% and total phosphorus by 22%. Plants also increased the amount of dissolved oxygen that entered the system. During the plant growing season removal of total phosphorus was better in all sets with plants regardless of media type. The sets containing Queenston Shale and Fonthill Sand media achieved the best results and plants in the Queenston Shale set increased treatment efficiency for every parameter except nitrogen. Vertical flow wetland sewage treatment systems can be designed and built to consistently meet MOE discharge requirements year-round for BOD5, suspended solids, total phosphorus and ammonium. This system Is generally superior to the free water systems and sub-surface horizontal flow systems in cold climate situations.