982 resultados para Neutral Higgs bosons


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the contributions of the exotic quarks and gauge bosons to the mass difference between the short- and the long-lived neutral kaon states in the SU(3)C×SU(3)L×U(1)N model. The lower bound MZ′∼14 TeV is obtained for the extra neutral gauge boson Z′0. Ranges for values of one of the exotic quark masses and quark mixing parameters are also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In certain mild extensions of the standard model, spin-independent long range forces can arise by exchange of two very light pseudoscalar spin-0 bosons. In particular, we have in mind models in which these bosons do not have direct tree level couplings to ordinary fermions. Using the dispersion theoretical method, we find a 1/r3 behavior of the potential for the exchange of very light pseudoscalars and a 1/r7 dependence if the pseudoscalars are true massless Goldstone bosons. ©1999 The American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a search for the standard model (SM) Higgs boson produced in association with a Z boson in 9.7fb -1 of pp̄ collisions collected with the D0 detector at the Fermilab Tevatron Collider at √s=1.96TeV. Selected events contain one reconstructed Z→e +e - or Z→μ +μ - candidate and at least two jets, including at least one jet identified as likely to contain a b quark. To validate the search procedure, we also measure the cross section for ZZ production in the same final state. It is found to be consistent with its SM prediction. We set upper limits on the ZH production cross section times branching ratio for H→bb̄ at the 95% C.L. for Higgs boson masses 90≤M H≤150GeV. The observed (expected) limit for M H=125GeV is 7.1 (5.1) times the SM cross section. © 2012 American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study is presented of the mass and spin-parity of the new boson recently observed at the LHC at a mass near 125 GeV. An integrated luminosity of 17.3 fb-1, collected by the CMS experiment in proton-proton collisions at center-of-mass energies of 7 and 8 TeV, is used. The measured mass in the ZZ channel, where both Z bosons decay to e or μ pairs, is 126.2±0.6(stat) ±0.2(syst) GeV. The angular distributions of the lepton pairs in this channel are sensitive to the spin-parity of the boson. Under the assumption of spin 0, the present data are consistent with the pure scalar hypothesis, while disfavoring the pure pseudoscalar hypothesis. © 2013 CERN. Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the possibilities of New Physics affecting the Standard Model (SM) Higgs sector. An effective Lagrangian with dimension-six operators is used to capture the effect of New Physics. We carry out a global Bayesian inference analysis, considering the recent LHC data set including all available correlations, as well as results from Tevatron. Trilinear gauge boson couplings and electroweak precision observables are also taken into account. The case of weak bosons tensorial couplings is closely examined and NLO QCD corrections are taken into account in the deviations we predict. We consider two scenarios, one where the coefficients of all the dimension-six operators are essentially unconstrained, and one where a certain subset is loop suppressed. In both scenarios, we find that large deviations from some of the SM Higgs couplings can still be present, assuming New Physics arising at 3 TeV. In particular, we find that a significantly reduced coupling of the Higgs to the top quark is possible and slightly favored by searches on Higgs production in association with top quark pairs. The total width of the Higgs boson is only weakly constrained and can vary between 0.7 and 2.7 times the Standard Model value within 95% Bayesian credible interval (BCI). We also observe sizeable effects induced by New Physics contributions to tensorial couplings. In particular, the Higgs boson decay width into Zγ can be enhanced by up to a factor 12 within 95% BCI. © 2013 SISSA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ATLAS and CMS collaborations have recently shown data suggesting the presence of a Higgs boson in the vicinity of 125 GeV. We show that a two-Higgs-doublet model spectrum, with the pseudoscalar state being the lightest, could be responsible for the diphoton signal events. In this model, the other scalars are considerably heavier and are not excluded by the current LHC data. If this assumption is correct, future LHC data should show a strengthening of the gamma gamma signal, while the signals in the ZZ(()*()) -> 4l and WW(*()) -> 2l2 nu channels should diminish and eventually disappear, due to the absence of diboson tree-level couplings of the CP-odd state. The heavier CP-even neutral scalars can now decay into channels involving the CP-odd light scalar which, together with their larger masses, allow them to avoid the existing bounds on Higgs searches. We suggest additional signals to confirm this scenario at the LHC, in the decay channels of the heavier scalars into AA and AZ. Finally, this inverted two-Higgs-doublet spectrum is characteristic in models where fermion condensation leads to electroweak symmetry breaking. We show that in these theories it is possible to obtain the observed diphoton signal at or somewhat above the prediction for the standard model Higgs for the typical values of the parameters predicted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recently announced Higgs boson discovery marks the dawn of the direct probing of the electroweak symmetry breaking sector. Sorting out the dynamics responsible for electroweak symmetry breaking now requires probing the Higgs boson interactions and searching for additional states connected to this sector. In this work, we analyze the constraints on Higgs boson couplings to the standard model gauge bosons using the available data from Tevatron and LHC. We work in a model-independent framework expressing the departure of the Higgs boson couplings to gauge bosons by dimension-six operators. This allows for independent modifications of its couplings to gluons, photons, and weak gauge bosons while still preserving the Standard Model (SM) gauge invariance. Our results indicate that best overall agreement with data is obtained if the cross section of Higgs boson production via gluon fusion is suppressed with respect to its SM value and the Higgs boson branching ratio into two photons is enhanced, while keeping the production and decays associated to couplings to weak gauge bosons close to their SM prediction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the main targets of the CMS experiment is to search for the Standard Model Higgs boson. The 4-lepton channel (from the Higgs decay h->ZZ->4l, l = e,mu) is one of the most promising. The analysis is based on the identification of two opposite-sign, same-flavor lepton pairs: leptons are required to be isolated and to come from the same primary vertex. The Higgs would be statistically revealed by the presence of a resonance peak in the 4-lepton invariant mass distribution. The 4-lepton analysis at CMS is presented, spanning on its most important aspects: lepton identification, variables of isolation, impact parameter, kinematics, event selection, background control and statistical analysis of results. The search leads to an evidence for a signal presence with a statistical significance of more than four standard deviations. The excess of data, with respect to the background-only predictions, indicates the presence of a new boson, with a mass of about 126 GeV/c2 , decaying to two Z bosons, whose characteristics are compatible with the SM Higgs ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is on loop-induced processes in theories with warped extra dimensions where the fermions and gauge bosons are allowed to propagate in the bulk, while the Higgs sector is localized on or near the infra-red brane. These so-called Randall-Sundrum (RS) models have the potential to simultaneously explain the hierarchy problem and address the question of what causes the large hierarchies in the fermion sector of the Standard Model (SM). The Kaluza-Klein (KK) excitations of the bulk fields can significantly affect the loop-level processes considered in this thesis and, hence, could indirectly indicate the existence of warped extra dimensions. The analytical part of this thesis deals with the detailed calculation of three loop-induced processes in the RS models in question: the Higgs production process via gluon fusion, the Higgs decay into two photons, and the flavor-changing neutral current b → sγ. A comprehensive, five-dimensional (5D) analysis will show that the amplitudes of the Higgs processes can be expressed in terms of integrals over 5D propagators with the Higgs-boson profile along the extra dimension, which can be used for arbitrary models with a compact extra dimension. To this end, both the boson and fermion propagators in a warped 5D background are derived. It will be shown that the seemingly contradictory results for the gluon fusion amplitude in the literature can be traced back to two distinguishable, not smoothly-connected incarnations of the RS model. The investigation of the b → sγ transition is performed in the KK decomposed theory. It will be argued that summing up the entire KK tower leads to a finite result, which can be well approximated by a closed, analytical expression.rnIn the phenomenological part of this thesis, the analytic results of all relevant Higgs couplings in the RS models in question are compared with current and in particular future sensitivities of the Large Hadron Collider (LHC) and the planned International Linear Collider. The latest LHC Higgs data is then used to exclude significant portions of the parameter space of each RS scenario. The analysis will demonstrate that especially the loop-induced Higgs couplings are sensitive to KK particles of the custodial RS model with masses in the multi tera-electronvolt range. Finally, the effect of the RS model on three flavor observables associated with the b → sγ transition are examined. In particular, we study the branching ratio of the inclusive decay B → X_s γ

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we perform an extensive study of flavor observables in a two-Higgs-doublet model with generic Yukawa structure (of type III). This model is interesting not only because it is the decoupling limit of the minimal supersymmetric standard model but also because of its rich flavor phenomenology which also allows for sizable effects not only in flavor-changing neutral-current (FCNC) processes but also in tauonic B decays. We examine the possible effects in flavor physics and constrain the model both from tree-level processes and from loop observables. The free parameters of the model are the heavy Higgs mass, tanβ (the ratio of vacuum expectation values) and the “nonholomorphic” Yukawa couplings ϵfij(f=u,d,ℓ). In our analysis we constrain the elements ϵfij in various ways: In a first step we give order of magnitude constraints on ϵfij from ’t Hooft’s naturalness criterion, finding that all ϵfij must be rather small unless the third generation is involved. In a second step, we constrain the Yukawa structure of the type-III two-Higgs-doublet model from tree-level FCNC processes (Bs,d→μ+μ−, KL→μ+μ−, D¯¯¯0→μ+μ−, ΔF=2 processes, τ−→μ−μ+μ−, τ−→e−μ+μ− and μ−→e−e+e−) and observe that all flavor off-diagonal elements of these couplings, except ϵu32,31 and ϵu23,13, must be very small in order to satisfy the current experimental bounds. In a third step, we consider Higgs mediated loop contributions to FCNC processes [b→s(d)γ, Bs,d mixing, K−K¯¯¯ mixing and μ→eγ] finding that also ϵu13 and ϵu23 must be very small, while the bounds on ϵu31 and ϵu32 are especially weak. Furthermore, considering the constraints from electric dipole moments we obtain constrains on some parameters ϵu,ℓij. Taking into account the constraints from FCNC processes we study the size of possible effects in the tauonic B decays (B→τν, B→Dτν and B→D∗τν) as well as in D(s)→τν, D(s)→μν, K(π)→eν, K(π)→μν and τ→K(π)ν which are all sensitive to tree-level charged Higgs exchange. Interestingly, the unconstrained ϵu32,31 are just the elements which directly enter the branching ratios for B→τν, B→Dτν and B→D∗τν. We show that they can explain the deviations from the SM predictions in these processes without fine-tuning. Furthermore, B→τν, B→Dτν and B→D∗τν can even be explained simultaneously. Finally, we give upper limits on the branching ratios of the lepton flavor-violating neutral B meson decays (Bs,d→μe, Bs,d→τe and Bs,d→τμ) and correlate the radiative lepton decays (τ→μγ, τ→eγ and μ→eγ) to the corresponding neutral current lepton decays (τ−→μ−μ+μ−, τ−→e−μ+μ− and μ−→e−e+e−). A detailed Appendix contains all relevant information for the considered processes for general scalar-fermion-fermion couplings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H --> gamma-gamma, H --> ZZ* --> 4 leptons and H --> WW --> 2 leptons + 2 neutrinos. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of 7 TeV and 8 TeV, corresponding to an integrated luminosity of about 25/fb. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson.