834 resultados para Neuro-signalling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: There is now no doubt that bystander signalling from irradiated cells occurs and causes a variety of responses in cells not targeted by the ionizing track. However, the mechanisms underlying these processes are unknown and the relevance to radiotherapy and risk assessment remains controversial. Previous research by our laboratory has shown bystander effects in a human keratinocyte cell line, HPV-G cells, exposed to medium from gamma irradiated HPV-G cells. The aim of this work was to investigate if similar mechanisms to those identified in medium transfer experiments occurred in these HPV-G cells when they are in the vicinity of microbeam irradiated cells. Demonstration of a commonality of mechanisms would support the idea that the process is not artifactual. MATERIALS AND METHODS: HPV-G cells were plated as two separate populations on mylar dishes. One population was directly irradiated using a charged particle microbeam (1 - 10 protons). The other population was not irradiated. Bystander factor-induced apoptosis was investigated in both populations following treatment by monitoring the levels of reactive oxygen species and mitochondrial membrane potential using fluorescent probes. Expression of the anti-apoptotic protein, bcl-2, and cytochrome c were determined, as well as apoptosis levels. RESULTS: Microbeam irradiation induced increases in reactive oxygen species and decreases in mitochondrial membrane potential at 6 h post-exposure, increased expression of bcl-2 and cytochrome c release at 6.5 h and increased apoptosis at 24 h. CONCLUSION: This study shows that similar bystander signalling pathways leading to apoptosis are induced following microbeam irradiation and following medium transfer. This demonstrates that the mechanisms involved are common across different radiation qualities and conditions and indicates that they may be relevant in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetic nephropathy is currently the leading cause of end-stage renal disease worldwide, and occurs in approximately one third of all diabetic patients. The molecular pathogenesis of diabetic nephropathy has not been fully characterized and novel mediators and drivers of the disease are still being described. Previous data from our laboratory has identified the developmentally regulated gene Gremlin as a novel target implicated in diabetic nephropathy in vitro and in vivo. We used bioinformatic analysis to examine whether Gremlin gene sequence and structure could be used to identify other genes implicated in diabetic nephropathy. The Notch ligand Jagged1 and its downstream effector, hairy enhancer of split-1 (Hes1), were identified as genes with significant similarity to Gremlin in terms of promoter structure and predicted microRNA binding elements. This led us to discover that transforming growth factor-beta (TGFß1), a primary driver of cellular changes in the kidney during nephropathy, increased Gremlin, Jagged1 and Hes1 expression in human kidney epithelial cells. Elevated levels of Gremlin, Jagged1 and Hes1 were also detected in extracts from renal biopsies from diabetic nephropathy patients, but not in control living donors. In situ hybridization identified specific upregulation and co-expression of Gremlin, Jagged1 and Hes1 in the same tubuli of kidneys from diabetic nephropathy patients, but not controls. Finally, Notch pathway gene clustering showed that samples from diabetic nephropathy patients grouped together, distinct from both control living donors and patients with minimal change disease. Together, these data suggest that Notch pathway gene expression is elevated in diabetic nephropathy, co-incident with Gremlin, and may contribute to the pathogenesis of this disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of the serine/threonine protein kinase B (PKB, also known as Akt) is becoming increasingly more evident to researchers investigating diverse cellular processes such as glucose uptake, cell-cycle progression, apoptosis and transcriptional regulation. New roles for PKB/Akt have been described in various organisms and biological processes. From the regulation of ovarian ecdysteroid production in the humble mosquito (Aedes aegypti), through the seasonal, tissue-specific regulation of PKB/Akt during the hibernation of yellow-bellied marmots (Marmota flaviventris), to the control of glucose metabolism and insulin signalling in the mouse (Mus musculus), our knowledge of the function of this protein kinase has expanded greatly in recent years. Significant advances in all aspects of PKB/Akt signalling have occurred in the past 2 years, including biological insights, novel substrates and newly discovered regulatory mechanisms of PKB/Akt. Collectively, these data expand the current models of PKB/Akt signalling and highlight potential directions for PKB/Akt research in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is ten years since the publication of three papers describing the cloning of a new proto-oncogene serine/threonine kinase termed protein kinase B (PKB)/Akt. Key roles for this protein kinase in cellular processes such as glucose metabolism, cell proliferation, apoptosis, transcription and cell migration are now well established. The explosion of publications involving PKB/Akt in the past three years emphasizes the high level of current interest in this signalling molecule. This review focuses on tracing the characterization of this kinase, through the elucidation of its mechanism of regulation, to its role in regulating physiological and pathophysiological processes,to our current understanding of the biology of PKB/Akt, and prospects for the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two distinct families of neuropeptides are known to endow platyhelminth nervous systems-the FMRFamide-like peptides (FLPs) and the neuropepticle Fs (NPFs). Flatworm FLPs are strusturally simple, each 4-6 amino acids in length with a carboxy terminal aromatic-hydropliobic-Arg-Phe-amide motif. Thus far, four distinct flatworm FLPs have been characterized, with only one of these from a parasite. They have a widespread distribution within the central and peripheral nervous system of every flatworm examined, including neurones serving the attachment organs, the somatic Musculature and the reproductive system. The only physiological role that has been identified for flatworm FLPs is myoexcitation. Flatworm NPFs are believed to be invertebrate homologues of the vertebrate neuropeptide Y (NPY) family of peptides. Flatworm NPFs are 36-39 amino acids in length and are characterized by a caboxy terminal GRPRFarnide signature and conserved tyrosine residues at positions 10 and 17 from the carboxy terminal. Like FLPs, NPF occurs throughout flatworm nervous systems, although less is known about its biological role. While there is some evidence for a myoexcitatory action in cestodes and flukes, more compelling physiological data indicate that flatworm NPF inhibits cAMP levels in a manner that is characteristic of NPY action in vertebrates. The widespread expression of these neuropeptides in flanworm parasites highlights the potential of these signalling systems to yield new targets for novel anthelmintics. Although platyhelminth FLP and NPF receptors await identification, other molecules that play pivotal roles in neuropeptide signalling have been uncovered. These enzymes, involved in the biosynthesis and processing of flatworm neuropeptides, have recently been described and offer other distinct and attractive targets for therapeutic interference.