999 resultados para Neural computers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The suitability of human mesenchymal stem cells (hMSCs) in regenerative medicine relies on retention of their proliferative expansion potential in conjunction with the ability to differentiate toward multiple lineages. Successful utilisation of these cells in clinical applications linked to tissue regeneration requires consideration of biomarker expression, time in culture and donor age, as well as their ability to differentiate towards mesenchymal (bone, cartilage, fat) or non-mesenchymal (e.g., neural) lineages. To identify potential therapeutic suitability we examined hMSCs after extended expansion including morphological changes, potency (stemness) and multilineage potential. Commercially available hMSC populations were expanded in vitro for > 20 passages, equating to > 60 days and > 50 population doublings. Distinct growth phases (A-C) were observed during serial passaging and cells were characterised for stemness and lineage markers at representative stages (Phase A: P+5, approximately 13 days in culture; Phase B: P+7, approximately 20 days in culture; and Phase C: P+13, approximately 43 days in culture). Cell surface markers, stem cell markers and lineage-specific markers were characterised by FACS, ICC and Q-PCR revealing MSCs maintained their multilineage potential, including neural lineages throughout expansion. Co-expression of multiple lineage markers along with continued CD45 expression in MSCs did not affect completion of osteogenic and adipogenic specification or the formation of neurospheres. Improved standardised isolation and characterisation of MSCs may facilitate the identification of biomarkers to improve therapeutic efficacy to ensure increased reproducibility and routine production of MSCs for therapeutic applications including neural repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multipotent neural stem cells (NSCs) provide a model to investigate neurogenesis and develop mechanisms of cell transplantation. In order to define improved markers of stemness and lineage specificity, we examined self-renewal and multi-lineage markers during long-term expansion and under neuronal and astrocyte differentiating conditions in human ESC-derived NSCs (hNSC H9 cells). In addition, with proteoglycans ubiquitous to the neural niche, we also examined heparan sulfate proteoglycans (HSPGs) and their regulatory enzymes. Our results demonstrate that hNSC H9 cells maintain self-renewal and multipotent capacity during extended culture and express HS biosynthesis enzymes and several HSPG core protein syndecans (SDCs) and glypicans (GPCs) at a high level. In addition, hNSC H9 cells exhibit high neuronal and a restricted glial differentiative potential with lineage differentiation significantly increasing expression of many HS biosynthesis enzymes. Furthermore, neuronal differentiation of the cells upregulated SDC4, GPC1, GPC2, GPC3 and GPC6 expression with increased GPC4 expression observed under astrocyte culture conditions. Finally, downregulation of selected HSPG core proteins altered hNSC H9 cell lineage potential. These findings demonstrate an involvement for HSPGs in mediating hNSC maintenance and lineage commitment and their potential use as novel markers of hNSC and neural cell lineage specification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flow resistance of an alluvial channel flow is not only affected by the Reynolds number and the roughness conditions but also the Froude number. Froude number is the most basic parameter in the case of the alluvial channel, thus effect of Froude number on resistance to flow should be considered in the formulation of the friction factor, which is not in the case of present available resistance equations. At present, no generally acceptable quantitative description of the effects of the Froude number on hydraulic resistance has been developed. Metamodeling technique, which is particularly useful in modeling a complex processes or where knowledge of the physics is limited, is presented as a tool complimentary to modeling friction factor in alluvial channels. Present work uses, a radial basis metamodel, which is a type of neural network modeling, to find the effect of Froude number on the flow resistance. Based on the experimental data taken from different sources, it has been found that the predicting capability of the present model is on acceptable level. Present work also tries in formulating an empirical equation for resistance in alluvial channel comprising all the three majorm, parameters, namely, roughness parameter, Froude number and Reynolds number. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An adaptive drug delivery design is presented in this paper using neural networks for effective treatment of infectious diseases. The generic mathematical model used describes the coupled evolution of concentration of pathogens, plasma cells, antibodies and a numerical value that indicates the relative characteristic of a damaged organ due to the disease under the influence of external drugs. From a system theoretic point of view, the external drugs can be interpreted as control inputs, which can be designed based on control theoretic concepts. In this study, assuming a set of nominal parameters in the mathematical model, first a nonlinear controller (drug administration) is designed based on the principle of dynamic inversion. This nominal drug administration plan was found to be effective in curing "nominal model patients" (patients whose immunological dynamics conform to the mathematical model used for the control design exactly. However, it was found to be ineffective in curing "realistic model patients" (patients whose immunological dynamics may have off-nominal parameter values and possibly unwanted inputs) in general. Hence, to make the drug delivery dosage design more effective for realistic model patients, a model-following adaptive control design is carried out next by taking the help of neural networks, that are trained online. Simulation studies indicate that the adaptive controller proposed in this paper holds promise in killing the invading pathogens and healing the damaged organ even in the presence of parameter uncertainties and continued pathogen attack. Note that the computational requirements for computing the control are very minimal and all associated computations (including the training of neural networks) can be carried out online. However it assumes that the required diagnosis process can be carried out at a sufficient faster rate so that all the states are available for control computation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study deals with the application of cluster analysis, Fuzzy Cluster Analysis (FCA) and Kohonen Artificial Neural Networks (KANN) methods for classification of 159 meteorological stations in India into meteorologically homogeneous groups. Eight parameters, namely latitude, longitude, elevation, average temperature, humidity, wind speed, sunshine hours and solar radiation, are considered as the classification criteria for grouping. The optimal number of groups is determined as 14 based on the Davies-Bouldin index approach. It is observed that the FCA approach performed better than the other two methodologies for the present study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known about the neural mechanisms by which transcranial direct current stimulation (tDCS) impacts on language processing in post-stroke aphasia. This was addressed in a proof-of-principle study that explored the effects of tDCS application in aphasia during simultaneous functional magnetic resonance imaging (fMRI). We employed a single subject, cross-over, sham-tDCS controlled design, and the stimulation was administered to an individualized perilesional stimulation site that was identified by a baseline fMRI scan and a picture naming task. Peak activity during the baseline scan was located in the spared left inferior frontal gyrus and this area was stimulated during a subsequent cross-over phase. tDCS was successfully administered to the target region and anodal- vs. sham-tDCS resulted in selectively increased activity at the stimulation site. Our results thus demonstrate that it is feasible to precisely target an individualized stimulation site in aphasia patients during simultaneous fMRI, which allows assessing the neural mechanisms underlying tDCS application. The functional imaging results of this case report highlight one possible mechanism that may have contributed to beneficial behavioral stimulation effects in previous clinical tDCS trials in aphasia. In the future, this approach will allow identifying distinct patterns of stimulation effects on neural processing in larger cohorts of patients. This may ultimately yield information about the variability of tDCS effects on brain functions in aphasia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased emphasis on rotorcraft performance and perational capabilities has resulted in accurate computation of aerodynamic stability and control parameters. System identification is one such tool in which the model structure and parameters such as aerodynamic stability and control derivatives are derived. In the present work, the rotorcraft aerodynamic parameters are computed using radial basis function neural networks (RBFN) in the presence of both state and measurement noise. The effect of presence of outliers in the data is also considered. RBFN is found to give superior results compared to finite difference derivatives for noisy data. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a search for the standard model Higgs boson produced in association with a $W$ or $Z$ boson in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV recorded by the CDF II experiment at the Tevatron in a data sample corresponding to an integrated luminosity of 2.1 fb$^{-1}$. We consider events which have no identified charged leptons, an imbalance in transverse momentum, and two or three jets where at least one jet is consistent with originating from the decay of a $b$ hadron. We find good agreement between data and predictions. We place 95% confidence level upper limits on the production cross section for several Higgs boson masses ranging from 110$\gevm$ to 150$\gevm$. For a mass of 115$\gevm$ the observed (expected) limit is 6.9 (5.6) times the standard model prediction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a search for standard model Higgs boson production in association with a W boson in proton-antiproton collisions at a center of mass energy of 1.96 TeV. The search employs data collected with the CDF II detector that correspond to an integrated luminosity of approximately 1.9 inverse fb. We select events consistent with a signature of a single charged lepton, missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with a secondary vertex tagging method, a jet probability tagging method, and a neural network filter. We use kinematic information in an artificial neural network to improve discrimination between signal and background compared to previous analyses. The observed number of events and the neural network output distributions are consistent with the standard model background expectations, and we set 95% confidence level upper limits on the production cross section times branching fraction ranging from 1.2 to 1.1 pb or 7.5 to 102 times the standard model expectation for Higgs boson masses from 110 to $150 GeV/c^2, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detecting Earnings Management Using Neural Networks. Trying to balance between relevant and reliable accounting data, generally accepted accounting principles (GAAP) allow, to some extent, the company management to use their judgment and to make subjective assessments when preparing financial statements. The opportunistic use of the discretion in financial reporting is called earnings management. There have been a considerable number of suggestions of methods for detecting accrual based earnings management. A majority of these methods are based on linear regression. The problem with using linear regression is that a linear relationship between the dependent variable and the independent variables must be assumed. However, previous research has shown that the relationship between accruals and some of the explanatory variables, such as company performance, is non-linear. An alternative to linear regression, which can handle non-linear relationships, is neural networks. The type of neural network used in this study is the feed-forward back-propagation neural network. Three neural network-based models are compared with four commonly used linear regression-based earnings management detection models. All seven models are based on the earnings management detection model presented by Jones (1991). The performance of the models is assessed in three steps. First, a random data set of companies is used. Second, the discretionary accruals from the random data set are ranked according to six different variables. The discretionary accruals in the highest and lowest quartiles for these six variables are then compared. Third, a data set containing simulated earnings management is used. Both expense and revenue manipulation ranging between -5% and 5% of lagged total assets is simulated. Furthermore, two neural network-based models and two linear regression-based models are used with a data set containing financial statement data from 110 failed companies. Overall, the results show that the linear regression-based models, except for the model using a piecewise linear approach, produce biased estimates of discretionary accruals. The neural network-based model with the original Jones model variables and the neural network-based model augmented with ROA as an independent variable, however, perform well in all three steps. Especially in the second step, where the highest and lowest quartiles of ranked discretionary accruals are examined, the neural network-based model augmented with ROA as an independent variable outperforms the other models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an Artificial Neural Network (ANN) approach for locating faults in distribution systems. Different from the traditional Fault Section Estimation methods, the proposed approach uses only limited measurements. Faults are located according to the impedances of their path using a Feed Forward Neural Networks (FFNN). Various practical situations in distribution systems, such as protective devices placed only at the substation, limited measurements available, various types of faults viz., three-phase, line (a, b, c) to ground, line to line (a-b, b-c, c-a) and line to line to ground (a-b-g, b-c-g, c-a-g) faults and a wide range of varying short circuit levels at substation, are considered for studies. A typical IEEE 34 bus practical distribution system with unbalanced loads and with three- and single- phase laterals and a 69 node test feeder with different configurations are considered for studies. The results presented show that the proposed approach of fault location gives close to accurate results in terms of the estimated fault location.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approximate dynamic programming (ADP) based neurocontroller is developed for a heat transfer application. Heat transfer problem for a fin in a car's electronic module is modeled as a nonlinear distributed parameter (infinite-dimensional) system by taking into account heat loss and generation due to conduction, convection and radiation. A low-order, finite-dimensional lumped parameter model for this problem is obtained by using Galerkin projection and basis functions designed through the 'Proper Orthogonal Decomposition' technique (POD) and the 'snap-shot' solutions. A suboptimal neurocontroller is obtained with a single-network-adaptive-critic (SNAC). Further contribution of this paper is to develop an online robust controller to account for unmodeled dynamics and parametric uncertainties. A weight update rule is presented that guarantees boundedness of the weights and eliminates the need for persistence of excitation (PE) condition to be satisfied. Since, the ADP and neural network based controllers are of fairly general structure, they appear to have the potential to be controller synthesis tools for nonlinear distributed parameter systems especially where it is difficult to obtain an accurate model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neural network finds its application in many image denoising applications because of its inherent characteristics such as nonlinear mapping and self-adaptiveness. The design of filters largely depends on the a-priori knowledge about the type of noise. Due to this, standard filters are application and image specific. Widely used filtering algorithms reduce noisy artifacts by smoothing. However, this operation normally results in smoothing of the edges as well. On the other hand, sharpening filters enhance the high frequency details making the image non-smooth. An integrated general approach to design a finite impulse response filter based on principal component neural network (PCNN) is proposed in this study for image filtering, optimized in the sense of visual inspection and error metric. This algorithm exploits the inter-pixel correlation by iteratively updating the filter coefficients using PCNN. This algorithm performs optimal smoothing of the noisy image by preserving high and low frequency features. Evaluation results show that the proposed filter is robust under various noise distributions. Further, the number of unknown parameters is very few and most of these parameters are adaptively obtained from the processed image.