952 resultados para Network pattern language


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional supervised data classification considers only physical features (e. g., distance or similarity) of the input data. Here, this type of learning is called low level classification. On the other hand, the human (animal) brain performs both low and high orders of learning and it has facility in identifying patterns according to the semantic meaning of the input data. Data classification that considers not only physical attributes but also the pattern formation is, here, referred to as high level classification. In this paper, we propose a hybrid classification technique that combines both types of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features or class topologies, while the latter measures the compliance of the test instances to the pattern formation of the data. Our study shows that the proposed technique not only can realize classification according to the pattern formation, but also is able to improve the performance of traditional classification techniques. Furthermore, as the class configuration's complexity increases, such as the mixture among different classes, a larger portion of the high level term is required to get correct classification. This feature confirms that the high level classification has a special importance in complex situations of classification. Finally, we show how the proposed technique can be employed in a real-world application, where it is capable of identifying variations and distortions of handwritten digit images. As a result, it supplies an improvement in the overall pattern recognition rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the seasonal patterns of Amazonian forest photosynthetic activity, and the effects thereon of variations in climate and land-use, by integrating data from a network of ground-based eddy flux towers in Brazil established as part of the ‘Large-Scale Biosphere Atmosphere Experiment in Amazonia’ project. We found that degree of water limitation, as indicated by the seasonality of the ratio of sensible to latent heat flux (Bowen ratio) predicts seasonal patterns of photosynthesis. In equatorial Amazonian forests (5◦ N–5◦ S), water limitation is absent, and photosynthetic fluxes (or gross ecosystem productivity, GEP) exhibit high or increasing levels of photosynthetic activity as the dry season progresses, likely a consequence of allocation to growth of new leaves. In contrast, forests along the southern flank of the Amazon, pastures converted from forest, and mixed forest-grass savanna, exhibit dry-season declines in GEP, consistent with increasing degrees of water limitation. Although previous work showed tropical ecosystem evapotranspiration (ET) is driven by incoming radiation, GEP observations reported here surprisingly show no or negative relationships with photosynthetically active radiation (PAR). Instead, GEP fluxes largely followed the phenology of canopy photosynthetic capacity (Pc), with only deviations from this primary pattern driven by variations in PAR. Estimates of leaf flush at three

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In electronic commerce, systems development is based on two fundamental types of models, business models and process models. A business model is concerned with value exchanges among business partners, while a process model focuses on operational and procedural aspects of business communication. Thus, a business model defines the what in an e-commerce system, while a process model defines the how. Business process design can be facilitated and improved by a method for systematically moving from a business model to a process model. Such a method would provide support for traceability, evaluation of design alternatives, and seamless transition from analysis to realization. This work proposes a unified framework that can be used as a basis to analyze, to interpret and to understand different concepts associated at different stages in e-Commerce system development. In this thesis, we illustrate how UN/CEFACT’s recommended metamodels for business and process design can be analyzed, extended and then integrated for the final solutions based on the proposed unified framework. Also, as an application of the framework, we demonstrate how process-modeling tasks can be facilitated in e-Commerce system design. The proposed methodology, called BP3 stands for Business Process Patterns Perspective. The BP3 methodology uses a question-answer interface to capture different business requirements from the designers. It is based on pre-defined process patterns, and the final solution is generated by applying the captured business requirements by means of a set of production rules to complete the inter-process communication among these patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis proposes a new document model, according to which any document can be segmented in some independent components and transformed in a pattern-based projection, that only uses a very small set of objects and composition rules. The point is that such a normalized document expresses the same fundamental information of the original one, in a simple, clear and unambiguous way. The central part of my work consists of discussing that model, investigating how a digital document can be segmented, and how a segmented version can be used to implement advanced tools of conversion. I present seven patterns which are versatile enough to capture the most relevant documents’ structures, and whose minimality and rigour make that implementation possible. The abstract model is then instantiated into an actual markup language, called IML. IML is a general and extensible language, which basically adopts an XHTML syntax, able to capture a posteriori the only content of a digital document. It is compared with other languages and proposals, in order to clarify its role and objectives. Finally, I present some systems built upon these ideas. These applications are evaluated in terms of users’ advantages, workflow improvements and impact over the overall quality of the output. In particular, they cover heterogeneous content management processes: from web editing to collaboration (IsaWiki and WikiFactory), from e-learning (IsaLearning) to professional printing (IsaPress).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The general aim of the thesis was to investigate how and to what extent the characteristics of action organization are reflected in language, and how they influence language processing and understanding. Even though a huge amount of research has been devoted to the study of the motor effects of language, this issue is very debated in literature. Namely, the majority of the studies have focused on low-level motor effects such as effector-relatedness of action, whereas only a few studies have started to systematically investigate how specific aspects of action organization are encoded and reflected in language. After a review of previous studies on the relationship between language comprehension and action (chapter 1) and a critical discussion of some of them (chapter 2), the thesis is composed by three experimental chapters, each devoted to a specific aspect of action organization. Chapter 3 presents a study designed with the aim to disentangle the effective time course of the involvement of the motor system during language processing. Three kinematics experiments were designed in order to determine whether and, at which stage of motor planning and execution effector-related action verbs influence actions executed with either the same or a different effector. Results demonstrate that the goal of an action can be linguistically re-activated, producing a modulation of the motor response. In chapter 4, a second study investigates the interplay between the role of motor perspective (agent) and the organization of action in motor chains. More specifically, this kinematics study aims at deepening how goal can be translated in language, using as stimuli simple sentences composed by a pronoun (I, You, He/She) and a verb. Results showed that the perspective activated by the pronoun You reflects the motor pattern of the “agent” combined with the chain structure of the verb. These data confirm an early involvement of the motor system in language processing, suggesting that it is specifically modulated by the activation of the agent’s perspective. In chapter 5, the issue of perspective is specifically investigated, focusing on its role in language comprehension. In particular, this study aimed at determining how a specific perspective (induced for example by a personal pronoun) modulates motor behaviour during and after language processing. A classical compatibility effect (the Action-sentence compatibility effect) has been used to this aim. In three behavioural experiments the authors investigated how the ACE is modulated by taking first or third person perspective. Results from these experiments showed that the ACE effect occurs only when a first-person perspective is activated by the sentences used as stimuli. Overall, the data from this thesis contributed to disentangle several aspects of how action organization is translated in language, and then reactivated during language processing. This constitutes a new contribution to the field, adding lacking information on how specific aspects such as goal and perspective are linguistically described. In addition, these studies offer a new point of view to understand the functional implications of the involvement of the motor system during language comprehension, specifically from the point of view of our social interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hierarchical organisation of biological systems plays a crucial role in the pattern formation of gene expression resulting from the morphogenetic processes, where autonomous internal dynamics of cells, as well as cell-to-cell interactions through membranes, are responsible for the emergent peculiar structures of the individual phenotype. Being able to reproduce the systems dynamics at different levels of such a hierarchy might be very useful for studying such a complex phenomenon of self-organisation. The idea is to model the phenomenon in terms of a large and dynamic network of compartments, where the interplay between inter-compartment and intra-compartment events determines the emergent behaviour resulting in the formation of spatial patterns. According to these premises the thesis proposes a review of the different approaches already developed in modelling developmental biology problems, as well as the main models and infrastructures available in literature for modelling biological systems, analysing their capabilities in tackling multi-compartment / multi-level models. The thesis then introduces a practical framework, MS-BioNET, for modelling and simulating these scenarios exploiting the potential of multi-level dynamics. This is based on (i) a computational model featuring networks of compartments and an enhanced model of chemical reaction addressing molecule transfer, (ii) a logic-oriented language to flexibly specify complex simulation scenarios, and (iii) a simulation engine based on the many-species/many-channels optimised version of Gillespie’s direct method. The thesis finally proposes the adoption of the agent-based model as an approach capable of capture multi-level dynamics. To overcome the problem of parameter tuning in the model, the simulators are supplied with a module for parameter optimisation. The task is defined as an optimisation problem over the parameter space in which the objective function to be minimised is the distance between the output of the simulator and a target one. The problem is tackled with a metaheuristic algorithm. As an example of application of the MS-BioNET framework and of the agent-based model, a model of the first stages of Drosophila Melanogaster development is realised. The model goal is to generate the early spatial pattern of gap gene expression. The correctness of the models is shown comparing the simulation results with real data of gene expression with spatial and temporal resolution, acquired in free on-line sources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uno dei principali ambiti di ricerca dell’intelligenza artificiale concerne la realizzazione di agenti (in particolare, robot) in grado di aiutare o sostituire l’uomo nell’esecuzione di determinate attività. A tal fine, è possibile procedere seguendo due diversi metodi di progettazione: la progettazione manuale e la progettazione automatica. Quest’ultima può essere preferita alla prima nei contesti in cui occorra tenere in considerazione requisiti quali flessibilità e adattamento, spesso essenziali per lo svolgimento di compiti non banali in contesti reali. La progettazione automatica prende in considerazione un modello col quale rappresentare il comportamento dell’agente e una tecnica di ricerca (oppure di apprendimento) che iterativamente modifica il modello al fine di renderlo il più adatto possibile al compito in esame. In questo lavoro, il modello utilizzato per la rappresentazione del comportamento del robot è una rete booleana (Boolean network o Kauffman network). La scelta di tale modello deriva dal fatto che possiede una semplice struttura che rende agevolmente studiabili le dinamiche tuttavia complesse che si manifestano al suo interno. Inoltre, la letteratura recente mostra che i modelli a rete, quali ad esempio le reti neuronali artificiali, si sono dimostrati efficaci nella programmazione di robot. La metodologia per l’evoluzione di tale modello riguarda l’uso di tecniche di ricerca meta-euristiche in grado di trovare buone soluzioni in tempi contenuti, nonostante i grandi spazi di ricerca. Lavori precedenti hanno gia dimostrato l’applicabilità e investigato la metodologia su un singolo robot. Lo scopo di questo lavoro è quello di fornire prova di principio relativa a un insieme di robot, aprendo nuove strade per la progettazione in swarm robotics. In questo scenario, semplici agenti autonomi, interagendo fra loro, portano all’emergere di un comportamento coordinato adempiendo a task impossibili per la singola unità. Questo lavoro fornisce utili ed interessanti opportunità anche per lo studio delle interazioni fra reti booleane. Infatti, ogni robot è controllato da una rete booleana che determina l’output in funzione della propria configurazione interna ma anche dagli input ricevuti dai robot vicini. In questo lavoro definiamo un task in cui lo swarm deve discriminare due diversi pattern sul pavimento dell’arena utilizzando solo informazioni scambiate localmente. Dopo una prima serie di esperimenti preliminari che hanno permesso di identificare i parametri e il migliore algoritmo di ricerca, abbiamo semplificato l’istanza del problema per meglio investigare i criteri che possono influire sulle prestazioni. E’ stata così identificata una particolare combinazione di informazione che, scambiata localmente fra robot, porta al miglioramento delle prestazioni. L’ipotesi è stata confermata applicando successivamente questo risultato ad un’istanza più difficile del problema. Il lavoro si conclude suggerendo nuovi strumenti per lo studio dei fenomeni emergenti in contesti in cui le reti booleane interagiscono fra loro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information processing and storage in the brain may be presented by the oscillations and cell assemblies. Here we address the question of how individual neurons associate together to assemble neural networks and present spontaneous electrical activity. Therefore, we dissected the neonatal brain at three different levels: acute 1-mm thick brain slice, cultured organotypic 350-µm thick brain slice and dissociated neuronal cultures. The spatio-temporal properties of neural activity were investigated by using a 60-channel Micro-electrode arrays (MEA), and the cell assemblies were studied by using a template-matching method. We find local on-propagating as well as large- scale propagating spontaneous oscillatory activity in acute slices, spontaneous network activity characterized by synchronized burst discharges in organotypic cultured slices, and autonomous bursting behaviour in dissociated neuronal cultures. Furthermore, repetitive spike patterns emerge after one week of dissociated neuronal culture and dramatically increase their numbers as well as their complexity and occurrence in the second week. Our data indicate that neurons can self-organize themselves, assembly to a neural network, present spontaneous oscillations, and emerge spatio-temporal activation patterns. The spontaneous oscillations and repetitive spike patterns may serve fundamental functions for information processing and storage in the brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordinated patterns of electrical activity are important for the early development of sensory systems. The spatiotemporal dynamics of these early activity patterns and the role of the peripheral sensory input for their generation are essentially unknown. There are two projects in this thesis. In project1, we performed extracellular multielectrode recordings in the somatosensory cortex of postnatal day 0 to 7 rats in vivo and observed three distinct patterns of synchronized oscillatory activity. (1) Spontaneous and periphery-driven spindle bursts of 1–2 s in duration and ~10 Hz in frequency occurred approximately every 10 s. (2) Spontaneous and sensory-driven gamma oscillations of 150–300 ms duration and 30–40 Hz in frequency occurred every 10–30 s. (3) Long oscillations appeared only every ~20 min and revealed the largest amplitude (250–750 µV) and longest duration (>40 s). These three distinct patterns of early oscillatory activity differently synchronized the neonatal cortical network. Whereas spindle bursts and gamma oscillations did not propagate and synchronized a local neuronal network of 200–400 µm in diameter, long oscillations propagated with 25–30 µm/s and synchronized 600-800 µm large ensembles. All three activity patterns were triggered by sensory activation. Single electrical stimulation of the whisker pad or tactile whisker activation elicited neocortical spindle bursts and gamma activity. Long oscillations could be only evoked by repetitive sensory stimulation. The neonatal oscillatory patterns in vivo depended on NMDAreceptor-mediated synaptic transmission and gap junctional coupling. Whereas spindle bursts and gamma oscillations may represent an early functional columnar-like pattern, long oscillations may serve as a propagating activation signal consolidating these immature neuronal networks. In project2, Using voltage-sensitive dye imaging and simultaneous multi-channel extracellular recordings in the barrel cortex and somatosensory thalamus of newborn rats in vivo, we found that spontaneous and whisker stimulation induced activity patterns were restricted to functional cortical columns already at the day of birth. Spontaneous and stimulus evoked cortical activity consisted of gamma oscillations followed by spindle bursts. Spontaneous events were mainly generated in the thalamus or by spontaneous whisker movements. Our findings indicate that during early developmental stages cortical networks self-organize in ontogenetic columns via spontaneous gamma oscillations triggered by the thalamus or sensory periphery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

People tend to automatically mimic facial expressions of others. If clear evidence exists on the effect of non-verbal behavior (emotion faces) on automatic facial mimicry, little is known about the role of verbal behavior (emotion language) in triggering such effects. Whereas it is well-established that political affiliation modulates facial mimicry, no evidence exists on whether this modulation passes also through verbal means. This research addressed the role of verbal behavior in triggering automatic facial effects depending on whether verbal stimuli are attributed to leaders of different political parties. Study 1 investigated the role of interpersonal verbs, referring to positive and negative emotion expressions and encoding them at different levels of abstraction, in triggering corresponding facial muscle activation in a reader. Study 2 examined the role of verbs expressing positive and negative emotional behaviors of political leaders in modulating automatic facial effects depending on the matched or mismatched political affiliation of participants and politicians of left-and right-wing. Study 3 examined whether verbs expressing happiness displays of ingroup politicians induce a more sincere smile (Duchenne) pattern among readers of same political affiliation relative to happiness expressions of outgroup politicians. Results showed that verbs encoding facial actions at different levels of abstraction elicited differential facial muscle activity (Study 1). Furthermore, political affiliation significantly modulated facial activation triggered by emotion verbs as participants showed more congruent and enhanced facial activity towards ingroup politicians’ smiles and frowns compared to those of outgroup politicians (Study 2). Participants facially responded with a more sincere smile pattern towards verbs expressing smiles of ingroup compared to outgroup politicians (Study 3). Altogether, results showed that the role of political affiliation in modulating automatic facial effects passes also through verbal channels and is revealed at a fine-grained level by inducing quantitative and qualitative differences in automatic facial reactions of readers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, Deep Learning techniques have shown to perform well on a large variety of problems both in Computer Vision and Natural Language Processing, reaching and often surpassing the state of the art on many tasks. The rise of deep learning is also revolutionizing the entire field of Machine Learning and Pattern Recognition pushing forward the concepts of automatic feature extraction and unsupervised learning in general. However, despite the strong success both in science and business, deep learning has its own limitations. It is often questioned if such techniques are only some kind of brute-force statistical approaches and if they can only work in the context of High Performance Computing with tons of data. Another important question is whether they are really biologically inspired, as claimed in certain cases, and if they can scale well in terms of "intelligence". The dissertation is focused on trying to answer these key questions in the context of Computer Vision and, in particular, Object Recognition, a task that has been heavily revolutionized by recent advances in the field. Practically speaking, these answers are based on an exhaustive comparison between two, very different, deep learning techniques on the aforementioned task: Convolutional Neural Network (CNN) and Hierarchical Temporal memory (HTM). They stand for two different approaches and points of view within the big hat of deep learning and are the best choices to understand and point out strengths and weaknesses of each of them. CNN is considered one of the most classic and powerful supervised methods used today in machine learning and pattern recognition, especially in object recognition. CNNs are well received and accepted by the scientific community and are already deployed in large corporation like Google and Facebook for solving face recognition and image auto-tagging problems. HTM, on the other hand, is known as a new emerging paradigm and a new meanly-unsupervised method, that is more biologically inspired. It tries to gain more insights from the computational neuroscience community in order to incorporate concepts like time, context and attention during the learning process which are typical of the human brain. In the end, the thesis is supposed to prove that in certain cases, with a lower quantity of data, HTM can outperform CNN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cybernetics revolution of the last years improved a lot our lives, having an immediate access to services and a huge amount of information over the Internet. Nowadays the user is increasingly asked to insert his sensitive information on the Internet, leaving its traces everywhere. But there are some categories of people that cannot risk to reveal their identities on the Internet. Even if born to protect U.S. intelligence communications online, nowadays Tor is the most famous low-latency network, that guarantees both anonymity and privacy of its users. The aim of this thesis project is to well understand how the Tor protocol works, not only studying its theory, but also implementing those concepts in practice, having a particular attention for security topics. In order to run a Tor private network, that emulates the real one, a virtual testing environment has been configured. This behavior allows to conduct experiments without putting at risk anonymity and privacy of real users. We used a Tor patch, that stores TLS and circuit keys, to be given as inputs to a Tor dissector for Wireshark, in order to obtain decrypted and decoded traffic. Observing clear traffic allowed us to well check the protocol outline and to have a proof of the format of each cell. Besides, these tools allowed to identify a traffic pattern, used to conduct a traffic correlation attack to passively deanonymize hidden service clients. The attacker, controlling two nodes of the Tor network, is able to link a request for a given hidden server to the client who did it, deanonymizing him. The robustness of the traffic pattern and the statistics, such as the true positive rate, and the false positive rate, of the attack are object of a potential future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Simulation Automation Framework for Experiments (SAFE) is a project created to raise the level of abstraction in network simulation tools and thereby address issues that undermine credibility. SAFE incorporates best practices in network simulationto automate the experimental process and to guide users in the development of sound scientific studies using the popular ns-3 network simulator. My contributions to the SAFE project: the design of two XML-based languages called NEDL (ns-3 Experiment Description Language) and NSTL (ns-3 Script Templating Language), which facilitate the description of experiments and network simulationmodels, respectively. The languages provide a foundation for the construction of better interfaces between the user and the ns-3 simulator. They also provide input to a mechanism which automates the execution of network simulation experiments. Additionally,this thesis demonstrates that one can develop tools to generate ns-3 scripts in Python or C++ automatically from NSTL model descriptions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pattern of contact sensitization to the supposedly most important allergens assembled in the baseline series differs between countries, presumably at least partly because of exposure differences. Objectives. To describe the prevalence of contact sensitization to allergens tested in consecutive patients in the years 2007 and 2008, and to discuss possible differences.