929 resultados para Network Modelling
Resumo:
This work presents active control of high-frequency vibration using skyhook dampers. The choice of the damper gain and its optimal location is crucial for the effective implementation of active vibration control. In vibration control, certain sensor/actuator locations are preferable for reducing structural vibration while using minimum control effort. In order to perform optimisation on a general built-up structure to control vibration, it is necessary to have a good modelling technique to predict the performance of the controller. The present work exploits the hybrid modelling approach, which combines the finite element method (FEM) and statistical energy analysis (SEA) to provide efficient response predictions at medium to high frequencies. The hybrid method is implemented here for a general network of plates, coupled via springs, to allow study of a variety of generic control design problems. By combining the hybrid method with numerical optimisation using a genetic algorithm, optimal skyhook damper gains and locations are obtained. The optimal controller gain and location found from the hybrid method are compared with results from a deterministic modelling method. Good agreement between the results is observed, whereas results from the hybrid method are found in a significantly reduced amount of time. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
The interaction between unsteady heat release and acoustic pressure oscillations in gas turbines results in self-excited combustion oscillations which can potentially be strong enough to cause significant structural damage to the combustor. Correctly predicting the interaction of these processes, and anticipating the onset of these oscillations can be difficult. In recent years much research effort has focused on the response of premixed flames to velocity and equivalence ratio perturbations. In this paper, we develop a flame model based on the socalled G-Equation, which captures the kinematic evolution of the flame surfaces, under the assumptions of axisymmetry, and ignoring vorticity and compressibility. This builds on previous work by Dowling [1], Schuller et al. [2], Cho & Lieuwen [3], among many others, and extends the model to a realistic geometry, with two intersecting flame surfaces within a non-uniform velocity field. The inputs to the model are the free-stream velocity perturbations, and the associated equivalence ratio perturbations. The model also proposes a time-delay calculation wherein the time delay for the fuel convection varies both spatially and temporally. The flame response from this model was compared with experiments conducted by Balachandran [4, 5], and found to show promising agreement with experimental forced case. To address the primary industrial interest of predicting self-excited limit cycles, the model has then been linked with an acoustic network model to simulate the closed-loop interaction between the combustion and acoustic processes. This has been done both linearly and nonlinearly. The nonlinear analysis is achieved by applying a describing function analysis in the frequency domain to predict the limit cycle, and also through a time domain simulation. In the latter case, the acoustic field is assumed to remain linear, with the nonlinearity in the response of the combustion to flow and equivalence ratio perturbations. A transfer function from unsteady heat release to unsteady pressure is obtained from a linear acoustic network model, and the corresponding Green function is used to provide the input to the flame model as it evolves in the time domain. The predicted unstable frequency and limit cycle are in good agreement with experiment, demonstrating the potential of this approach to predict instabilities, and as a test bench for developing control strategies. Copyright © 2011 by ASME.
Resumo:
Two adaptive numerical modelling techniques have been applied to prediction of fatigue thresholds in Ni-base superalloys. A Bayesian neural network and a neurofuzzy network have been compared, both of which have the ability to automatically adjust the network's complexity to the current dataset. In both cases, despite inevitable data restrictions, threshold values have been modelled with some degree of success. However, it is argued in this paper that the neurofuzzy modelling approach offers real benefits over the use of a classical neural network as the mathematical complexity of the relationships can be restricted to allow for the paucity of data, and the linguistic fuzzy rules produced allow assessment of the model without extensive interrogation and examination using a hypothetical dataset. The additive neurofuzzy network structure means that redundant inputs can be excluded from the model and simple sub-networks produced which represent global output trends. Both of these aspects are important for final verification and validation of the information extracted from the numerical data. In some situations neurofuzzy networks may require less data to produce a stable solution, and may be easier to verify in the light of existing physical understanding because of the production of transparent linguistic rules. © 1999 Elsevier Science S.A.
Resumo:
The adoption of lean premixed prevaporised combustion systems can reduce NOx emissions from gas turbines, but unfortunately also increases their susceptibility to thermoacoustic instabilities. Initially, acoustic waves can produce heat release fluctuations by a variety of mechanisms, often by perturbing the equivalence ratio. If correctly phased, heat release fluctuations can subsequently generate more acoustic waves, which at high amplitude can result in significant structural damage to the combustor. The prediction of this phenomenon is of great industrial interest. In previous work, we have coupled a physics based, kinematic model of the flame with a network model to provide the planar acoustic response necessary to close the feedback loop and predict the onset and amplitude of thermoacoustic instabilities in a lab-scale, axisymmetric single burner combustor. The advantage of a time domain approach is that the modal interaction, the influence of harmonics, and flame saturation can be investigated. This paper extends this approach to more realistic, annular geometries, where both planar and circumferential modes must be considered. In lean premixed prevaporised combustors, fluctuations in equivalence ratio have been shown to be a dominant cause of unsteady combustion. These can occur, for example, due to velocity perturbations in the premix ducts, which can lead to equivalence ratio fluctuations at the fuel injectors, which are subsequently convected downstream to the flame surfaces. Here, they can perturb the heat release by locally altering the flame speed, enthalpy of combustion, and, indirectly, the flame surface area. In many gas turbine designs, particularly aeroengines, the geometries are composed of a ring of premix ducts linking a plenum and an annular combustor. The most unstable modes are often circumferential modes. The network model is used to characterise the flow response of the geometry to heat fluctuations at an appropriate location, such as the fuel injectors. The heat release at each flame holder is determined in the time domain using the kinematic flame model derived, as a function of the flow perturbations in the premix duct. This approach is demonstrated for an annular ring of burners on a in a simple geometry. The approach is then extended to an industrial type gas turbine combustor, and used to predict the limit cycle amplitudes. Copyright © 2012 by ASME.
Resumo:
Purpose: Although business models that deliver sustainability are increasingly popular in the literature, few tools that assist in sustainable business modelling have been identified. This paper investigates how businesses might create balanced social, environmental and economic value through integrating sustainability more fully into the core of their business. A value mapping tool is developed to help firms create value propositions better suited for sustainability. Design/methodology/approach: In addition to a literature review, six sustainable companies were interviewed to understand their approaches to business modelling, using a case study approach. Building on the literature and practice, a tool was developed which was pilot tested through use in a workshop. The resulting improved tool and process was subsequently refined through use in 13 workshops. Findings: A novel value mapping tool was developed to support sustainable business modelling, which introduces three forms of value (value captured, missed/destroyed or wasted, and opportunity) and four major stakeholder groups (environment, society, customer, and network actors). Practical implications: This tool intends to support business modelling for sustainability by assisting firms in better understanding their overall value proposition, both positive and negative, for all relevant stakeholders in the value network. Originality/value: The tool adopts a multiple stakeholder view of value, a network rather than firm centric perspective, and introduces a novel way of conceptualising value that specifically introduces value destroyed or wasted/ missed, in addition to the current value proposition and new opportunities for value creation. © Emerald Group Publishing Limited.
Resumo:
Mechanical spring-damper network performance can often be improved by the inclusion of a third passive component called the inerter. This ideally has the characteristic that the force at the terminals is directly proportional to the relative acceleration between them. The fluid inerter presented here has advantages over mechanical ball screw devices in terms of simplicity of design. Furthermore, it can be readily adapted to implement various passive network layouts. Variable orifices and valves can be included to provide series or parallel damping. Test data from prototypes with helical tubes have been compared with models to investigate parasitic damping effects of the fluid. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
In natural languages multiple word sequences can represent the same underlying meaning. Only modelling the observed surface word sequence can result in poor context coverage, for example, when using n-gram language models (LM). To handle this issue, paraphrastic LMs were proposed in previous research and successfully applied to a US English conversational telephone speech transcription task. In order to exploit the complementary characteristics of paraphrastic LMs and neural network LMs (NNLM), the combination between the two is investigated in this paper. To investigate paraphrastic LMs' generalization ability to other languages, experiments are conducted on a Mandarin Chinese broadcast speech transcription task. Using a paraphrastic multi-level LM modelling both word and phrase sequences, significant error rate reductions of 0.9% absolute (9% relative) and 0.5% absolute (5% relative) were obtained over the baseline n-gram and NNLM systems respectively, after a combination with word and phrase level NNLMs. © 2013 IEEE.
Resumo:
Lake Dianchi is one of the most extensively impacted freshwater lakes by algal blooms. To investigate the response of dominant algal genera, neural networks were applied to model the relationship between water quality parameters and the biomass of four dominant genera (Microcystic spp., Anabaena sp., Quadricauda (Turp.) Breb, Pediastrum Mey) in Dianchi. Results showed that the timing and magnitude of algal blooms of Microcystic spp., nabaena sp., Quadricauda (Turp.) Breb, and Pediastrum Mey in Dianchi could be successfully predicted. The evaluation of environmental factors showed that pH had more significant impact on concentrations of all the four dominant algal genera than the nutrient factors, such as total phosphorus and total nitrogen.
Resumo:
Processing networks are a variant of the standard linear programming network model which are especially useful for optimizing industrial energy/environment systems. Modelling advantages include an intuitive diagrammatic representation and the ability to incorporate all forms of energy and pollutants in a single integrated linear network model. Added advantages include increased speed of solution and algorithms supporting formulation. The paper explores their use in modelling the energy and pollution control systems in large industrial plants. The pollution control options in an ethylene production plant are analyzed as an example. PROFLOW, a computer tool for the formulation, analysis, and solution of processing network models, is introduced.
Resumo:
The work comprises a new theoretical development applied to aid decision making in an increasingly important commercial sector. Agile supply, where small volumes of high margin, short life cycle innovative products are offered, is increasingly carried out through a complex global supply chain network. We outline an equilibrium solution in such a supply chain network, which works through limited cooperation and coordination along edges (links) in the network. The links constitute the stochastic modelling entities rather than the nodes of the network. We utilise newly developed phase plane analysis to identify, model and predict characteristic behaviour in supply chain networks. The phase plane charts profile the flow of inventory and identify out of control conditions. They maintain quality within the network, as well as intelligently track the way the network evolves in conditions of changing variability. The methodology is essentially distribution free, relying as it does on the study of forecasting errors, and can be used to examine contractual details as well as strategic and game theoretical concepts between decision-making components (agents) of a network. We illustrate with typical data drawn from supply chain agile fashion products.
Resumo:
C.M. Onyango, J.A. Marchant and R. Zwiggelaar, 'Modelling uncertainty in agricultural image analysis', Computers and Electronics in Agriculture 17 (3), 295-305 (1997)
Resumo:
Buildings consume 40% of Ireland's total annual energy translating to 3.5 billion (2004). The EPBD directive (effective January 2003) places an onus on all member states to rate the energy performance of all buildings in excess of 50m2. Energy and environmental performance management systems for residential buildings do not exist and consist of an ad-hoc integration of wired building management systems and Monitoring & Targeting systems for non-residential buildings. These systems are unsophisticated and do not easily lend themselves to cost effective retrofit or integration with other enterprise management systems. It is commonly agreed that a 15-40% reduction of building energy consumption is achievable by efficiently operating buildings when compared with typical practice. Existing research has identified that the level of information available to Building Managers with existing Building Management Systems and Environmental Monitoring Systems (BMS/EMS) is insufficient to perform the required performance based building assessment. The cost of installing additional sensors and meters is extremely high, primarily due to the estimated cost of wiring and the needed labour. From this perspective wireless sensor technology provides the capability to provide reliable sensor data at the required temporal and spatial granularity associated with building energy management. In this paper, a wireless sensor network mote hardware design and implementation is presented for a building energy management application. Appropriate sensors were selected and interfaced with the developed system based on user requirements to meet both the building monitoring and metering requirements. Beside the sensing capability, actuation and interfacing to external meters/sensors are provided to perform different management control and data recording tasks associated with minimisation of energy consumption in the built environment and the development of appropriate Building information models(BIM)to enable the design and development of energy efficient spaces.
Resumo:
The work presented in this thesis covers four major topics of research related to the grid integration of wave energy. More specifically, the grid impact of a wave farm on the power quality of its local network is investigated. Two estimation methods were developed regarding the flicker level Pst generated by a wave farm in relation to its rated power as well as in relation to the impedance angle ψk of the node in the grid to which it is connected. The electrical design of a typical wave farm design is also studied in terms of minimum rating for three types of costly pieces of equipment, namely the VAr compensator, the submarine cables and the overhead line. The power losses dissipated within the farm's electrical network are also evaluated. The feasibility of transforming a test site into a commercial site of greater rated power is investigated from the perspective of power quality and of cables and overhead line thermal loading. Finally, the generic modelling of ocean devices, referring here to both wave and tidal current devices, is investigated.
Resumo:
Parallel processing techniques have been used in the past to provide high performance computing resources for activities such as Computational Fluid Dynamics. This is normally achieved using specialized hardware and software, the expense of which would be difficult to justify for many fire engineering practices. In this paper, we demonstrate how typical office-based PCs attached to a local area network have the potential to offer the benefits of parallel processing with minimal costs associated with the purchase of additional hardware or software. A dynamic load balancing scheme was devised to allow the effective use of the software on heterogeneous PC networks. This scheme ensured that the impact between the parallel processing task and other computer users on the network was minimized thus allowing practical parallel processing within a conventional office environment. Copyright © 2006 John Wiley & Sons, Ltd.