973 resultados para Network Flow Interpretation
Resumo:
The neutral wire in most power flow software is usually merged into phase wires using Kron's reduction. Since the neutral wire and the ground are not explicitly represented, neutral wire and ground currents and voltages remain unknown. In some applications, like power quality and safety analyses, loss analysis, etc., knowing the neutral wire and ground currents and voltages could be of special interest. In this paper, a general power flow algorithm for three-phase four-wire radial distribution networks, considering neutral grounding, based on backward-forward technique, is proposed. In this novel use of the technique, both the neutral wire and ground are explicitly represented. A problem of three-phase distribution system with earth return, as a special case of a four-wire network, is also elucidated. Results obtained from several case studies using medium- and low-voltage test feeders with unbalanced load, are presented and discussed.
Resumo:
The data of four networks that can be used in carrying out comparative studies with methods for transmission network expansion planning are given. These networks are of various types and different levels of complexity. The main mathematical formulations used in transmission expansion studies-transportation models, hybrid models, DC power flow models, and disjunctive models are also summarised and compared. The main algorithm families are reviewed-both analytical, combinatorial and heuristic approaches. Optimal solutions are not yet known for some of the four networks when more accurate models (e.g. The DC model) are used to represent the power flow equations-the state of the art with regard to this is also summarised. This should serve as a challenge to authors searching for new, more efficient methods.
Resumo:
Distribution systems with distributed generation require new analysis methods since networks are not longer passive. Two of the main problems in this new scenario are the network reconfiguration and the loss allocation. This work presents a distribution systems graphic simulator, developed with reconfiguration functions and a special focus on loss allocation, both considering the presence of distributed generation. This simulator uses a fast and robust power flow algorithm based on the current summation backward-forward technique. Reconfiguration problem is solved through a heuristic methodology and the losses allocation function, based on the Zbus method, is presented as an attached result for each obtained configuration. Results are presented and discussed, remarking the easiness of analysis through the graphic simulator as an excellent tool for planning and operation engineers, and very useful for training. © 2004 IEEE.
Resumo:
Low flexibility and reliability in the operation of radial distribution networks make those systems be constructed with extra equipment as sectionalising switches in order to reconfigure the network, so the operation quality of the network can be improved. Thus, sectionalising switches are used for fault isolation and for configuration management (reconfiguration). Moreover, distribution systems are being impacted by the increasing insertion of distributed generators. Hence, distributed generation became one of the relevant parameters in the evaluation of systems reconfiguration. Distributed generation may affect distribution networks operation in various ways, causing noticeable impacts depending on its location. Thus, the loss allocation problem becomes more important considering the possibility of open access to the distribution networks. In this work, a graphic simulator for distribution networks with reconfiguration and loss allocation functions, is presented. Reconfiguration problem is solved through a heuristic methodology, using a robust power flow algorithm based on the current summation backward-forward technique, considering distributed generation. Four different loss allocation methods (Zbus, Direct Loss Coefficient, Substitution and Marginal Loss Coefficient) are implemented and compared. Results for a 32-bus medium voltage distribution network, are presented and discussed.
Resumo:
The aim of this study was to examine the role of nifedipine and Nitric Oxide (NO) on salivary flow and compounds (salivary amylase, saliva total proteins, saliva calcium, sodium and potassium). Male Holtzman rats weighting 200-250 g were anesthetized with zoletil 50 mg kg -1 (tiletamine chloridrate 125.0 mg and zolazepan chloridrate 125.0 mg) into quadriceps muscle and stainless steel cannulas were implanted into their lateral ventricle of the brain (LV). Animals in divided group were injected with nifedipine (50 μg μL -1) alone and in combination with 7-nitroindazol (7-NIT) (40 μg μL -1), neuronal NO Sinthase Inhibitor (nNOSI) and Sodium Nitroprussate (SNP) (30 μg μL -1) NO donor agent. As a secretory stimuli, pilocarpine dissolved in isotonic was administered intraperitoneally (ip) at a dosage of 10 mg kg -1 body weight. Saliva was collected for 7 min with four cotton balls weighing approximately 20 mg each, two of which were placed on either side of the oral cavity, with the other two placed under the tongue. Nifedipine treatment induced a reduction in saliva secretion rate and concentration of amylase, total protein and calcium without changes in sodium and potassium concentration in comparison with controls. Co-treatment of animals with nifedipine and SNP retained flow rate and concentration of amylase, total protein and calcium in normal levels. Co-treatment of animals with nifedipine and 7-NIT potentiated the effect of nifedipine on the reduction of saliva secretion and concentrations of amylase, total protein and calcium. Nifedipine (dihydroperidine) calcium-channel blocker widely in use is associated with salivary dysfunction acting in the central nervous system structures. NO might be the mechanism for protective effect against the nifedipine-induce salivary dysfunction, acting in the CNS. © 2006 Asian Network for Scientific Information.
Resumo:
The power flow problem, in transmission networks, has been well solved, for most cases, using Newton-Raphson method (NR) and its decoupled versions. Generally speaking, the solution of a non-linear system of equations refers to two methods: NR and Successive Substitution. The proposal of this paper is to evaluate the potential of the Substitution-Newton-Raphson Method (SNR), which combines both methods, on the solution of the power flow problem. Simulations were performed using a two-bus test network in order to observe the characteristics of these methods. It was verified that the NR is faster than SNR, in terms of convergence, considering non-stressed scenarios. For those cases where the power flow in the network is closed to the limits (stressed system), the SNR converges faster. This paper presents the power flow formulation of the SNR and describes its potential for its application in special cases such as stressed scenarios. © 2006 IEEE.
Resumo:
In this paper a three-phase power flow for electrical distribution systems considering different models of voltage regulators is presented. A voltage regulator (VR) is an equipment that maintains the voltage level in a predefined value in a distribution line in spite of the load variations within its nominal power. Three different types of connections are analyzed: 1) wye-connected regulators, 2) open delta-connected regulators and 3) closed delta-connected regulators. To calculate the power flow, the three-phase backward/forward sweep algorithm is used. The methodology is tested on the IEEE 34 bus distribution system. ©2008 IEEE.
Resumo:
This paper adjusts decentralized OPF optimization to the AC power flow problem in power systems with interconnected areas operated by diferent transmission system operators (TSO). The proposed methodology allows finding the operation point of a particular area without explicit knowledge of network data of the other interconnected areas, being only necessary to exchange border information related to the tie-lines between areas. The methodology is based on the decomposition of the first-order optimality conditions of the AC power flow, which is formulated as a nonlinear programming problem. To allow better visualization of the concept of independent operation of each TSO, an artificial neural network have been used for computing border information of the interconnected TSOs. A multi-area Power Flow tool can be seen as a basic building block able to address a large number of problems under a multi-TSO competitive market philosophy. The IEEE RTS-96 power system is used in order to show the operation and effectiveness of the decentralized AC Power Flow. ©2010 IEEE.
Resumo:
We consider the two-level network design problem with intermediate facilities. This problem consists of designing a minimum cost network respecting some requirements, usually described in terms of the network topology or in terms of a desired flow of commodities between source and destination vertices. Each selected link must receive one of two types of edge facilities and the connection of different edge facilities requires a costly and capacitated vertex facility. We propose a hybrid decomposition approach which heuristically obtains tentative solutions for the vertex facilities number and location and use these solutions to limit the computational burden of a branch-and-cut algorithm. We test our method on instances of the power system secondary distribution network design problem. The results show that the method is efficient both in terms of solution quality and computational times. © 2010 Elsevier Ltd.
Resumo:
In this paper a framework based on the decomposition of the first-order optimality conditions is described and applied to solve the Probabilistic Power Flow (PPF) problem in a coordinated but decentralized way in the context of multi-area power systems. The purpose of the decomposition framework is to solve the problem through a process of solving smaller subproblems, associated with each area of the power system, iteratively. This strategy allows the probabilistic analysis of the variables of interest, in a particular area, without explicit knowledge of network data of the other interconnected areas, being only necessary to exchange border information related to the tie-lines between areas. An efficient method for probabilistic analysis, considering uncertainty in n system loads, is applied. The proposal is to use a particular case of the point estimate method, known as Two-Point Estimate Method (TPM), rather than the traditional approach based on Monte Carlo simulation. The main feature of the TPM is that it only requires resolve 2n power flows for to obtain the behavior of any random variable. An iterative coordination algorithm between areas is also presented. This algorithm solves the Multi-Area PPF problem in a decentralized way, ensures the independent operation of each area and integrates the decomposition framework and the TPM appropriately. The IEEE RTS-96 system is used in order to show the operation and effectiveness of the proposed approach and the Monte Carlo simulations are used to validation of the results. © 2011 IEEE.
Resumo:
The prediction of the traffic behavior could help to make decision about the routing process, as well as enables gains on effectiveness and productivity on the physical distribution. This need motivated the search for technological improvements in the Routing performance in metropolitan areas. The purpose of this paper is to present computational evidences that Artificial Neural Network ANN could be use to predict the traffic behavior in a metropolitan area such So Paulo (around 16 million inhabitants). The proposed methodology involves the application of Rough-Fuzzy Sets to define inference morphology for insertion of the behavior of Dynamic Routing into a structured rule basis, without human expert aid. The dynamics of the traffic parameters are described through membership functions. Rough Sets Theory identifies the attributes that are important, and suggest Fuzzy relations to be inserted on a Rough Neuro Fuzzy Network (RNFN) type Multilayer Perceptron (MLP) and type Radial Basis Function (RBF), in order to get an optimal surface response. To measure the performance of the proposed RNFN, the responses of the unreduced rule basis are compared with the reduced rule one. The results show that by making use of the Feature Reduction through RNFN, it is possible to reduce the need for human expert in the construction of the Fuzzy inference mechanism in such flow process like traffic breakdown. © 2011 IEEE.
Resumo:
This paper presents a novel mathematical model for the transmission network expansion planning problem. Main idea is to consider phase-shifter (PS) transformers as a new element of the transmission system expansion together with other traditional components such as transmission lines and conventional transformers. In this way, PS are added in order to redistribute active power flows in the system and, consequently, to diminish the total investment costs due to new transmission lines. Proposed mathematical model presents the structure of a mixed-integer nonlinear programming (MINLP) problem and is based on the standard DC model. In this paper, there is also applied a specialized genetic algorithm aimed at optimizing the allocation of candidate components in the network. Results obtained from computational simulations carried out with IEEE-24 bus system show an outstanding performance of the proposed methodology and model, indicating the technical viability of using these nonconventional devices during the planning process. Copyright © 2012 Celso T. Miasaki et al.
Resumo:
In the network reconfiguration context, the challenge nowadays is to improve the system in order to get intelligent systems that are able to monitor the network and produce refined information to support the operator decisions in real time, this because the network is wide, ramified and in some places difficult to access. The objective of this paper is to present the first results of the network reconfiguration algorithm that has been developed to CEMIG-D. The algorithm's main idea is to provide a new network configuration, after an event (fault or study case), based on an initial condition and aiming to minimize the affected load, considering the restrictions of load flow equations, maximum capacity of the lines as well as equipments and substations, voltage limits and system radial operation. Initial tests were made considering real data from the system, provided by CEMIG-D and it reveals very promising results. © 2013 IEEE.
Resumo:
Editorial remarks.-- Open discussion: Conceptual change in regulation in a model of public service provision ; Policies and institutional frameworks for drinking water supply and sanitation ; Strategies for low-carbon development in megacities in Latin America ; Adapting to climate change in water management in the irrigation sector.-- Meetings: Towards a vision on natural resource governance for equality ; Water resources faced with uncertainty and the risk of climate change ; Regulation challenges in the water sector.-- News of the Network: Lessons to be drawn from the interprovincial Colorado River flow distribution agreement ; Rural drinking water programme in Chile ; Ecuador’s Act on Water Resources and Water Use and Exploitation.-- Internet and WWW News
Resumo:
Efficient implementation of recycling networks requires appropriate logistical structures for managing the reverse flow of materials from users to producers. The steel sheet distributor studied had established a protocol for scrap recovery with the steel plant and its customers. The company invested in producing containers, hiring a specialized labor force and in purchasing trucks for container transportation to implement the logistics network for recycling. That network interconnected the company with two kinds of customers: the ones returning scrap and the ones who preferred to continue business-as-usual. The logistical network was analyzed using emergy synthesis, and the data obtained were used to evaluate and compare the system's environmental costs and benefits from the perspective of the distributor and the steel plant operator. The use of emergy ternary diagrams provided a way to assess recycle strategies to compare the relative economic and environmental benefits of the logistical network implemented. The minimum quantity of scrap that the distributor must recover to improve environmental benefits was determined allowing decision on whether it is worth keeping the system running. The new assessment method proposed also may help policy-makers to create strategies to reward or incentive users of reverse logistics, and help to establish regulations, by decreasing taxes or stimulating innovation, for effectively implement the National Policy on Solid Waste. (C) 2013 Elsevier Ltd. All rights reserved.