969 resultados para Near surface regions
Resumo:
A presente dissertação vem no seguimento dos estudos realizados no Departamento de Engenharia Civil da Universidade Nova de Lisboa sobre o reforço à flexão de vigas de betão armado com compósitos de CFRP (compósitos reforçados com fibras de carbono). Numa primeira fase deste trabalho foram estudadas e desenvolvidas duas novas técnicas de reforço de vigas à flexão com laminados de CFRP, às quais foram atribuídas as designações de Externally Bonded Reinforcement Anchorage (EBRA) e Horizontal Near Surface Mounted Reinforcement (HNSMR). Estes sistemas de reforço foram estudados e testados em cinco vigas de betão armado de secção transversal em T, as quais foram levadas à rotura através de ensaios à flexão tendo em conta um sistema de aplicação de carga em quatro pontos. Para diferentes historiais de carregamento (monotónicos e cíclicos) foram analisados diversos parâmetros relacionados com a capacidade de mobilização da resistência à tração dos elementos de reforço, resistência máxima dos sistemas, ductilidade dos mesmos e eficiência destes perante situações de serviço. Com isto, realizou-se um estudo comparativo entre o desempenho destes sistemas de reforço e o de duas outras técnicas já estudadas, nomeadamente, os sistemas Externally Bonded Reinforcement (EBR) e Near Surface Mounted Reinforcement (NSMR). Como complemento deste trabalho desenvolveu-se também um programa de cálculo em MATLAB, capaz de simular o problema em estudo através de um modelo numérico de análise não-linear de secções. A representatividade dos dados obtidos pelo modelo numérico foi verificada posteriormente através de uma análise comparativa entre estes e os valores experimentais obtidos.
Resumo:
A necessidade de manutenção e reabilitação de estruturas de madeira antigas é, nos dias de hoje, um aspeto bastante importante a nível mundial. Assim, o estudo da eficácia de alguns sistemas de reforço torna-se fulcral. A presente dissertação é um estudo experimental sobre reforço de estruturas de madeira com materiais compósitos. Os materiais compósitos utilizados na componente experimental foram polímeros reforçados com fibras de carbono (CFRP – Carbon Fiber Reinforced Polymer) e estes foram colados ao substrato de madeira com resina epoxídica. O estudo experimental foi composto por duas fases. Na primeira fase realizaram-se ensaios de corte simples e na segunda fase ensaios de flexão. Os ensaios de corte simples foram realizados de modo a estudar a ligação CFRP-madeira e a analisar a influência do comprimento colado de CFRP ao substrato de madeira. Para tal, utilizaram-se duas técnicas de reforço, a técnica EBR (Externally Bonded Reinforcement) em que os laminados de CFRP são colados exteriormente e a técnica NSM (Near Surface Mounted) em que os laminados de CFRP são colados numa ranhura feita no provete de madeira. Foram realizados 17 ensaios de corte simples, 10 com a técnica EBR e 7 com a técnica NSM. Na segunda fase, foram realizados 3 ensaios de flexão sobre pavimentos de madeira reforçados com laminados de CFRP. Para estes ensaios também se utilizaram duas técnicas de reforço, a técnica EBR e uma técnica em que o laminado de FRP é ancorado nas extremidades das vigas. Numa fase final os resultados foram analisados e comparados de modo a tirar conclusões. Concluíu-se que a técnica de reforço NSM apresenta um desempenho superior à técnica EBR nos ensaios de corte simples. Comparativamente à técnica EBR, os pavimentos de madeira com o laminado de CFRP ancorado nas extremidades das vigas apresentaram um melhor desempenho.
Resumo:
This paper presents the main features of finite element FE numerical model developed using the computer code FEMIX to predict the near-surface mounted NSM carbon-fiber-reinforced polymer CFRP rods shear repair contribution to corroded reinforced concrete RC beams. In the RC beams shear repaired with NSM technique, the Carbon Fibre Reinforced Polymer (CFRP) rods are placed inside pre-cut grooves onto the concrete cover of the RC beam’s lateral faces and are bonded to the concrete with high epoxy adhesive. Experimental and 3D numerical modelling results are presented in this paper in terms of load-deflection curves, and failure modes for 4 short corroded beams: two corroded beams (A1CL3-B and A1CL3-SB) and two control beams (A1T-B and A1T-SB), the beams noted with B were let repaired in bending only with NSM CFRP rods while the ones noted with SB were repaired in both bending and shear with NSM technique. The corrosion of the tensile steel bars and its effect on the shear capacity of the RC beams was discussed. Results showed that the FE model was able to capture the main aspects of the experimental load-deflection curves of the RC beams, moreover it has presented the experimental failure modes and FE numerical modelling crack patterns and both gave similar results for non-shear repaired beams which failed in diagonal tension mode of failure and for shear-repaired beams which failed due to large flexural crack at the middle of the beams along with the concrete crushing, three dimensional crack patterns were produced for shear-repaired beams in order to investigate the splitting cracks occurred at the middle of the beams and near the support.
Resumo:
Cette communication présente les caractéristiques principales d’un modèle par Eléments Finis (EF) développé en utilisant le logiciel FEMIX afin de prévoir le comportement de poutres en béton armé corrodées réparées à l’effort tranchant par l’insertion des joncs de carbone par la technique NSM (Near-Surface Mounted reinforcement). Cette technique consiste à sceller les joncs de carbone dans des engravures déjà préparées sur les surfaces inférieure et latérale de la poutre corrodée à réparer. Les résultats expérimentaux et ceux de la modélisation numérique en mode 3D sont présentés en termes des courbes charge-flèche et des modes de ruine pour quatre poutres courtes: deux poutres corrodées (A1CL3-B et A1CL3-SB) et deux poutres témoins (A1T-B et A1T-SB), les poutres avec « -B » sont réparées seulement en flexion avec un jonc de carbone par la technique NSM, tandis que celles avec « -SB » sont réparées à la fois en flexion et à l’effort tranchant. La corrosion des barres d'acier tendues et son effet sur la résistance à l’effort tranchant des poutres en béton armé sont discutés. Les résultats ont montré une bonne corrélation entre les prédictions par le modèle EF en termes de courbes expérimentales charge-flèche, de la fissuration et des modes de ruine.
Resumo:
Applying a certain prestress level to the carbon fiber reinforced polymer (CFRP) reinforcement according to either externally bonded reinforcing (EBR) or near surface mounted (NSM) techniques can mobilize the strengthening potentialities of this high tensile strength composite material. For the prediction of the flexural behavior of reinforced concrete (RC) structures strengthened with prestressed EBR or NSM CFRPs, however, simplified analytical and design formulations still need to be developed as a guidance for engineers to design this type of strengthened structures by hand calculation without any programming help. Hence, the current work aims to briefly explain a developed simplified analytical approach, with a design framework, to predict the flexural behavior of RC beams flexurally strengthened with either prestressed EBR or NSM CFRP reinforcements. Moreover, an upper limit for the prestress level is proposed in order to optimize the ductility performance of the NSM prestressing technique. The good predictive performance of the analytical approaches was appraised by simulating the results of experimental programs composed of RC beams strengthened with prestressed NSM CFRP reinforcements.
Resumo:
This study aims to develop an innovative carbon fibre reinforced polymer (CFRP) laminate with a U configuration to address strengthening interventions, where the increment of both flexural and shear capacity of reinforced concrete (RC) elements is required. This strengthening solution combines the near surface mounted (NSM) and embedded through section (ETS) techniques in the same application, since these techniques have already evidenced high performance on flexural and shear strengthening of RC beams using FRP systems, respectively. In fact, the proposed hybrid technique aims to mobilize the advantages provided by these two strengthening techniques by using an innovative CFRP laminate. The strengthening efficacy of this new hybrid NSM/ETS technique was numerically assessed and compared to the corresponding efficiency of NSM and ETS techniques applied separately for the flexural and shear strengthening of RC beams, respectively. The numerical models are described and the main relevant results are presented and discussed.
Resumo:
Using prestressed near surface mounted fibre reinforced polymers (NSM-FRP) is nowadays regaining the attention from the scientific community for the strengthening of existing reinforced concrete (RC) structures. The application of prestressed internal FRP bars and externally bonded prestressed FRPs has already been deeply investigated and revealed considerable benefits when compared to the corresponding passive solutions. A certain amount of prestress provides benefits mainly associated to structural integrity and material durability. Immediately after prestress transference, it is possible to close some of the existing cracks, decreasing the susceptibility of the element to corrosion and, a certain amount of deflection can be recovered due to the creation of a negative curvature. However, very few studies have been carried out to properly assess the preservation of prestress over time. In this context, several reinforced concrete beams strengthened with prestressed NSM carbon FRP (CFRP) laminates were prestressed and monitored for about 40 days. The data obtained from these experimental programs is in this paper presented and analysed. The observed prestress losses were later modelled using finite elements analysis and, although this topic is not addressed in this paper, the obtained results revealed considerable precision. The largest strain losses in the CFRP laminate were found to be mainly located in the extremities of the bonded length, while in the central zone most of the applied pre-strain was retained over time. The highest CFRP strain losses were observed in the first 6 to 12 days after prestress transfer, suggesting that the application of prestressed NSM-FRP will be very effective over time.
Resumo:
The objective of this paper is to propose a simplified analytical approach to predict the flexural behavior of simply supported reinforced-concrete (RC) beams flexurally strengthened with prestressed carbon fiber reinforced polymer (CFRP) reinforcements using either externally bonded reinforcing (EBR) or near surface mounted (NSM) techniques. This design methodology also considers the ultimate flexural capacity of NSM CFRP strengthened beams when concrete cover delamination is the governing failure mode. A moment–curvature (M–χ) relationship formed by three linear branches corresponding to the precracking, postcracking, and postyielding stages is established by considering the four critical M–χ points that characterize the flexural behavior of CFRP strengthened beams. Two additional M–χ points, namely, concrete decompression and steel decompression, are also defined to assess the initial effects of the prestress force applied by the FRP reinforcement. The mid-span deflection of the beams is predicted based on the curvature approach, assuming a linear curvature variation between the critical points along the beam length. The good predictive performance of the analytical model is appraised by simulating the force–deflection response registered in experimental programs composed of RC beams strengthened with prestressed NSM CFRP reinforcements.
Resumo:
Despite the extensive research that has been conducted on the debonding behaviour of FRP strengthening systems, no standard methodology has been yet established on its experimental characterization. In this context, to assess the performance and reliability of small scale testing on NSM (near surface mounted) FRP strengthening systems, an experimental program was carried out on a series of nine NSM FRP strengthening systems, in the framework of an international Round Robin Testing (RRT). Eleven laboratories and seven manufacturers and suppliers participated in this extensive international exercise, which regarded both NSM and EBR FRP strengthening systems. Test results obtained for the NSM systems by the participating laboratories are discussed and compared in this paper to investigate the feasibility of the adopted single/double pulling shear test method, to investigate the mechanism of bond between NSM FRP reinforcement and concrete, and to investigate the level of variability obtained between the participating laboratories testing the same material batches. It is concluded that the tested variants in the adopted single/double shear pulling test have a significant influence, stressing the importance of the level of detail of standardized test protocols for bond verification. On overall, given the variants included in this study, the obtained variation in bond stress-slip behaviour between the laboratories remained fairly limited.
Resumo:
The use of prestressed near surface mounted fibre reinforced polymers (NSM-FRP) has been long acknowledged to be a suitable approach to strengthen and retrofit existing reinforced concrete structures. The application of a certain amount of prestress to the FRP prior to its installation provides a number of benefits, mainly related to crack width and deflection requisites at serviceability limit state conditions. After transferring the prestress to a structural element, some of the existing cracks can be closed, decreasing the vulnerability of the element to corrosion and, a certain amount of deflection can be recovered due to the introduced negative curvature. However, these benefits can only be assured if the prestress is properly preserved over time. In this context, three series of reinforced concrete beams, in a total of 10 beams, were strengthened with a prestressed carbon FRP laminate (CFRP) and monitored for about 40 days. The data obtained from these tests is in this paper presented and analysed. The observed losses of strain in the CFRP laminate were found to be mainly located in the extremities of the bonded length, while in the central zone most of the initial strain was well-preserved over time. Additionally, the highest CFRP strain losses were observed in the first 6 to 12 days after prestress transfer, suggesting that the benefits of prestressed NSM-FRP will not be considerably lost over time.
Resumo:
This paper presents the main features of finite element FE numerical model developed using the computer code FEMIX to predict the near-surface mounted NSM carbon-fiber-reinforced polymer CFRP rods shear repair contribution to corroded reinforced concrete RC beams. In the RC beams shear repaired with NSM technique, the Carbon Fibre Reinforced Polymer (CFRP) rods are placed inside pre-cut grooves onto the concrete cover of the RC beam’s lateral faces and are bonded to the concrete with high epoxy adhesive. Experimental and 3D numerical modelling results are presented in this paper in terms of load-deflection curves, failure modes and slip information of the tensile steel bars for 4 short corroded beams: two corroded beams (A1CL3-B and A1CL3-SB) and two control beams (A1T-B and A1T-SB), the beams noted with B were let repaired in bending only with NSM CFRP rods while the ones noted with SB were repaired in both bending and shear with NSM technique. The corrosion of the tensile steel bars and its effect on the shear capacity of the RC beams was discussed. Results showed that the FE model was able to capture the main aspects of the experimental load-deflection curves of the RC beams, moreover it has presented the experimental failure modes and FE numerical modelling crack patterns and both gave similar results for non-shear repaired beams which failed in diagonal tension mode of failure and for shear-repaired beams which failed due to large flexural crack at the middle of the beams along with the concrete crushing, three dimensional crack patterns were produced for shear-repaired beams in order to investigate the splitting cracks occurred at the middle of the beams and near the support.
Resumo:
This study presents an experimental program to assess the tensile strain distribution along prestressed carbon fiber reinforced polymer (CFRP) reinforcement flexurally applied on the tensile surface of RC beams according to near surface mounted (NSM) technique. Moreover, the current study aims to propose an analytical formulation, with a design framework, for the prediction of distribution of CFRP tensile strain and bond shear stress and, additionally, the prestress transfer length. After demonstration the good predictive performance of the proposed analytical approach, parametric studies were carried out to analytically evaluate the influence of the main material properties, and CFRP and groove cross section on the distribution of the CFRP tensile strain and bond shear stress, and on the prestress transfer length. The proposed analytical approach can also predict the evolution of the prestress transfer length during the curing time of the adhesive by considering the variation of its elasticity modulus during this period.
Resumo:
This paper aims to evaluate experimentally the potentialities of Hybrid Composite Plates (HCPs) technique for the shear strengthening of reinforced concrete (RC) beams that were previously subjected to intense damage in shear. HCP is a thin plate of Strain Hardening Cementitious Composite (SHCC) reinforced with Carbon Fiber Reinforced Polymer (CFRP) laminates. For this purpose, an experimental program composed of two series of beams (rectangular and T cross section) was executed to assess the strengthening efficiency of this technique. In the first step of this experimental program, the control beams, without steel stirrups, were loaded up to their shear failure, and fully unloaded. Then, these pre-damaged beams were shear strengthened by applying HCPs to their lateral faces by using a combination of epoxy adhesive and mechanical anchors. The bolts were applied with a certain torque in order to increase the concrete confinement. The obtained results showed that the increase of load carrying capacity of the damaged strengthened beams when HCPs were applied with epoxy adhesive and mechanical anchors was 2 and 2.5 times of the load carrying capacity of the corresponding reference beams (without HCPs) for the rectangular and T cross section beam series, respectively. To further explore the potentialities of the HCPs technique for the shear strengthening, the experimental tests were simulated using an advanced numerical model by a FEM-based computer program. After demonstration the good predictive performance of the numerical model, a parametric study was executed to highlight the influence of SHCC as an alternative for mortar, as well as the influence of torque level applied to the mechanical anchors, on the load carrying capacity of beams strengthened with the proposed technique.
Resumo:
The use of Near Surface Mounted (NSM) Fiber Reinforced Polymers (FRPs) for strengthening masonry structures can be a suitable substitute for Externally Bonded Reinforcement (EBR) technique. NSM technique has many advantages such as larger bonded area, better anchorage capacity, higher resistance, higher percentage exploitation of the FRP and reduced installation time. However, information regarding the effectiveness of this strengthening technique for masonry structures is scarce and characterization of the critical mechanisms such as bond behavior is necessary. This paper presents experimental investigation of the bond performance in NSM-strengthened brick specimens. CFRP laminates are used for NSM strengthening of masonry bricks with different bonded lengths. The bond between FRP and masonry substrate is investigated by performing conventional pull-out tests and the experimental results are presented and discussed.
Resumo:
Tese de Doutoramento em Engenharia Civil