955 resultados para Navigation.
Resumo:
Blavigator (blind navigator) is a vision aid for blind and visuaIIy impaired persons. It supports local navigation by detecting waIkable paths in the immediate vicinity of the user. It guides the user for centering on the path.
Resumo:
Ultrasonic, infrared, laser and other sensors are being applied in robotics. Although combinations of these have allowed robots to navigate, they are only suited for specific scenarios, depending on their limitations. Recent advances in computer vision are turning cameras into useful low-cost sensors that can operate in most types of environments. Cameras enable robots to detect obstacles, recognize objects, obtain visual odometry, detect and recognize people and gestures, among other possibilities. In this paper we present a completely biologically inspired vision system for robot navigation. It comprises stereo vision for obstacle detection, and object recognition for landmark-based navigation. We employ a novel keypoint descriptor which codes responses of cortical complex cells. We also present a biologically inspired saliency component, based on disparity and colour.
Resumo:
The SmartVision prototype is a small, cheap and easily wearable navigation aid for blind and visually impaired persons. Its functionality addresses global navigation for guiding the user to some destiny, and local navigation for negotiating paths, sidewalks and corridors, with avoidance of static as well as moving obstacles. Local navigation applies to both in- and outdoor situations. In this article we focus on local navigation: the detection of path borders and obstacles in front of the user and just beyond the reach of the white cane, such that the user can be assisted in centering on the path and alerted to looming hazards. Using a stereo camera worn at chest height, a portable computer in a shoulder-strapped pouch or pocket and only one earphone or small speaker, the system is inconspicuous, it is no hindrence while walking with the cane, and it does not block normal surround sounds. The vision algorithms are optimised such that the system can work at a few frames per second.
Resumo:
The goal of the work presented in this paper is to provide mobile platforms within our campus with a GPS based data service capable of supporting precise outdoor navigation. This can be achieved by providing campus-wide access to real time Differential GPS (DGPS) data. As a result, we designed and implemented a three-tier distributed system that provides Internet data links between remote DGPS sources and the campus and a campus-wide DGPS data dissemination service. The Internet data link service is a two-tier client/server where the server-side is connected to the DGPS station and the client-side is located at the campus. The campus-wide DGPS data provider disseminates the DGPS data received at the campus via the campus Intranet and via a wireless data link. The wireless broadcast is intended for portable receivers equipped with a DGPS wireless interface and the Intranet link is provided for receivers with a DGPS serial interface. The application is expected to provide adequate support for accurate outdoor campus navigation tasks.
Resumo:
Trabalho final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
This project proposes an approach for supporting Indoor Navigation Systems using Pedestrian Dead Reckoning-based methods and by analyzing motion sensor data available in most modern smartphones. Processes suggested in this investigation are able to calculate the distance traveled by a user while he or she is walking. WLAN fingerprint- based navigation systems benefit from the processes followed in this research and results achieved to reduce its workload and improve its positioning estimations.
Resumo:
The aim of this retrospective study was to compare the clinical and radiographic results after TKA (PFC, DePuy), performed either by computer assisted navigation (CAS, Brainlab, Johnson&Johnson) or by conventional means. Material and methods: Between May and December 2006 we reviewed 36 conventional TKA performed between 2002 and 2003 (group A) and 37 navigated TKA performed between 2005 and 2006 (group B) by the same experienced surgeon. The mean age in group A was 74 years (range 62-90) and 73 (range 58-85) in group B with a similar age distribution. The preoperative mechanical axes in group A ranged from -13° varus to +13° valgus (mean absolute deviation 6.83°, SD 3.86), in group B from -13° to +16° (mean absolute deviation 5.35, SD 4.29). Patients with a previous tibial osteotomy or revision arthroplasty were excluded from the study. Examination was done by an experienced orthopedic resident independent of the surgeon. All patients had pre- and postoperative long standing radiographs. The IKSS and the WOMAC were utilized to determine the clinical outcome. Patient's degree of satisfaction was assessed on a visual analogous scale (VAS). Results: 32 of the 37 navigated TKAs (86,5%) showed a postoperative mechanical axis within the limits of 3 degrees of valgus or varus deviation compared to only 24 (66%) of the 36 standard TKAs. This difference was significant (p = 0.045). The mean absolute deviation from neutral axis was 3.00° (range -5° to +9°, SD: 1.75) in group A in comparison to 1.54° (range -5° to +4°, SD: 1.41) in group B with a highly significant difference (p = 0.000). Furthermore, both groups showed a significant postoperative improvement of their mean IKSS-values (group A: 89 preoperative to 169 postoperative, group B 88 to 176) without a significant difference between the two groups. Neither the WOMAC nor the patient's degree of satisfaction - as assessed by VAS - showed significant differences. Operation time was significantly higher in group B (mean 119.9 min.) than in group A (mean 99.6 min., p <0.000). Conclusion: Our study showed consistent significant improvement of postoperative frontal alignment in TKA by computer assisted navigation (CAS) compared to standard methods, even in the hands of a surgeon well experienced in standard TKA implantation. However, the follow-up time of this study was not long enough to judge differences in clinical outcome. Thus, the relevance of computer navigation for clinical outcome and survival of TKA remains to be proved in long term studies to justify the longer operation time. References 1 Stulberg SD. Clin Orth Rel Res. 2003;(416):177-84. 2 Chauhan SK. JBJS Br. 2004;86(3):372-7. 3 Bäthis H, et al. Orthopäde. 2006;35(10):1056-65.
Resumo:
[Acte. 1866-11-07]
Resumo:
Contient : Rapport, par Nicolas LANGLOIS, de la mission dans les ports de Normandie, 1626-1627, qui lui avait été confiée en vertu de lettres patentes du 29 novembre 1626 ; Sur la création des directeurs de la navigation et commerce de France ; Actes de Louis XIII, concernant le commerce et la navigation, 1627 (f. 29), et 1626 (f. 33) ; « L'utilité de la navigation et commerce qu'on veut ériger en France » ; Traité ou projet de traité entre Louis XIV et Frédéric III, roi de Danemark, en 23 articles ; « Traité de commerce entre la France et le Dannemarck, fait en l'an 1663 », en 45 articles (f. 58), — comprenant un « Roolle ou tariffe du péage de la mer d'Oresunde, qui a esté réglé pour les marchands françois au mois d'aoust 1645 » [cf. ms. français 18592, f. 595] (f. 80)