979 resultados para NONCOMMUTATIVE RESIDUE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O desempenho animal é a medida mais direta de se avaliar a qualidade dos alimentos. Entretanto, dados de desempenho são insuficientes para se detectar as possíveis interações que possam ocorrer no ambiente ruminal. O objetivo do presente trabalho foi avaliar os possíveis efeitos associativos nas concentrações de ácidos graxos voláteis (AGVs), nitrogênio amoniacal (N-NH3) e pH da fração líquida remanescente da digestão da matéria seca (MS) de volumosos exclusivos (cana-de-açúcar= CN; capim-elefante com 60 dias= CP60 e 180 dias= CP180 de crescimento; e silagem de milho= SIL) e suas combinações (cana-de-açúcar+silagem de milho= CNSIL; cana-de-açúcar+capim-elefante-60d= CNCP60; cana-de-açúcar+capim-elefante-180d= CNCP180; silagem de milho+capim-elefante-60d= SILCP60; silagem de milho+capim-elefante-180d= SILCP180) na proporção de 50% na MS, que levam a resultados de desempenhos positivos ou negativos de bovinos. As concentrações de AGVs, N-NH3 e pH dos tratamentos foram: CN= 56,9 mmol L-1, 50,1 mg dL-1, 5,7; CNSIL= 61,4 mmol L-1, 50,7 mg dL-1, 5,8; CNCP60= 54,7 mmol L-1, 47,6 mg dL-1, 5,8; CNCP180= 45,4 mmol L-1, 49,4 mg dL-1, 6,0; SIL= 57,2 mmol L-1, 54,0 mg dL-1, 5,8; SILCP60= 57,1 mmol L-1, 53,1 mg dL-1, 5,9; SILCP180= 55,9 mmol L-1, 52,3 mg dL-1, 6,0; CP60= 58,1 mmol L-1, 49,4 mg dL-1, 5,9; CP180= 44,0 mmol L-1, 46,4 mg dL-1, 6,1. Os carboidratos não estruturais e amido, aliados à fibra e proteína, contribuíram para que ocorresse o efeito associativo positivo na mistura 50:50 cana/silagem. Isso pode ter propiciado os melhores resultados de desempenho em bovinos devido ao elevado padrão fermentativo.
Resumo:
An experimental investigation of air enrichment in a combustion chamber designed to incinerate aqueous residues is presented. Diesel fuel and liquefied petroleum gas (LPG) were used independently as fuels. An increase of 85% in the incineration capacity was obtained with nearly 50% O-2 in the oxidant gas, in comparison to incineration with air only. The incineration capacity continues increasing for enrichment levels above 50% O-2 , although at a lower pace. For complete oxy-flame combustion (100% O-2 ), the increase of the incineration capacity was about 110% relative to the starting conditions and about 13.5% relative to the condition with 50% O-2 . The CO concentration measured near the flame front decreases drastically with the increase of O-2 content in the oxidant gas. At the chamber exit, the CO concentration was always near zero, indicating that the chamber residence time was sufficient to complete fuel oxidation in any test setting. For diesel fuel, the NOx was entirely formed in the first region of the combustion chamber. For diesel fuel, there was some increase in the NOx concentration up to 35% of O-2 ; this increase became very sharp after that. From 60 ppm, at operation with air only, the NOx concentration raises to 200 ppm at 35% O-2 , and then to 2900 ppm at 74% O-2 . The latter corresponds to six times more NOx in terms of the ratio of mass of NO to mass of residue, compared to the situation of combustion with air only. For LPG, the NOx concentrations reached 4200 ppm at 80% O-2 , corresponding to nine times more, also in terms of the ratio of mass of NO to mass of residue, in comparison with combustion with air only. Results of different techniques used to control the NOx emission during air enrichment are discussed: (a) variation of the recirculated zone intensity, (b) increase of the spray Sauter mean diameter, (c) fuel staging, (d) oxidizer staging, and (e) ammonia injection. The present paper shows that NOx emission may be controlled without damage of the increase of incineration capacity by the enrichment and with low emission of partial oxidation pollutants such as CO.
Resumo:
Three insecticides (chlorpyrifos methyl, dimethoate and fenthion) were applied on clementine fruits with and without mineral oil to assess the effect of mineral oil on pesticide residues. In both experiments the residues on the fruits after the last treatment and at harvest time were not significantly different.
Resumo:
Langmuir and Langmuir-Blodgett films of 16-membered azobenzocrown ether with naphthalene residue were prepared and characterized. The Langmuir monolayers were successfully transferred to form LB films onto solid substrates. The films deposited onto ITO electrodes were also used as electrodes in cyclic voltammetry and the results showed that the films had a distinct response to metal ions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Recent studies on the recycling of vinasse, its potential use in agriculture and possible environmental problems resulting from the use and disposal of this residue are reviewed.
Resumo:
The sugar cane crop according to several authors can generate, besides the industrialized stalks, an amount of crop residues from the order of 15 to 30% in weight of the aerial part of the plants, depending on the field conditions. The sugar cane area in Brazil is around 5.5×106 hectares, with an amount of 400.106 tons of stalks, with stalks yield of 72 tons.ha-1 (Unica, 2005). This study took place in a sugar cane plot (Latitude 22°46'S, Longitude 47°23'W and 600m of altitude) with 3% of slope, located in São Paulo State. The sugar cane variety was SP 80-1816, in its forth cut, 11 months old and with a planted row spacing of 1.40m. By other side, several sugar mills are bringing the crop residue to their patio to produce energy with the bagasse. One way for that is the baling operation to bring the crop residue at the sugar mill. Some fundamental variables were obtained to define the best set of machines to work with in sugar cane crop residue removal in the baling system among the studied ones, some of the variables were: Soil Index (T1 = 0.83%, T2 = 0.46%, T3 = 0.65%, T4 = 0.57%); Energy Efficiency (T1 = 82.48%, T2 = 83.88%, T3 = 82.83% and T4 = 82.97%) of the system and Effective Cost for Equivalent Energy in US$.EBP-1 (T1 = 11.10, T2= 10.46, T3 = 11.47 and T4 = 10.57) of the baled trash delivered at the sugar mill.
Resumo:
The sequential extraction procedure of Zinc and lead performed in a Brazilian soil showed that it presents high pollution potential once over 90% of total lead is present in fractions where the metals can be easily mobilized. The fraction contents are as follow: F1 = 174 and 15 mg kg-1; F2 = 3155 and 9.7 mg kg -1; F3 = 99 and 1.6 mg kg -1; Residual fraction = 38 and 5.5 mg kg -1 for lead and zinc, respectively. The comparison with non contaminated soil only Pb 2+ concentration is above its intervention reference concentration, 900 mg kg -1.
Resumo:
This investigation has demonstrated the need for thermal treatment of seawater neutralised red mud (SWRM) in order to obtain reasonable adsorption of Reactive Blue dye 19 (RB 19). Thermal treatment results in a greater surface area, which results in an increased adsorption capacity due to more available adsorption sites. Adsorption of RB 19 has been found to be best achieved in acidic conditions using SWNRM400 (heated to 400 °C) with an adsorption capacity of 416.7. mg/g compared to 250.0. mg/g for untreated SWNRM. Kinetic studies indicate a pseudosecond-order reaction mechanism is responsible for the adsorption of RB 19 using SWNRM, which indicates adsorption occurs by electrostatic interactions. © 2013 Elsevier Inc.
Resumo:
Reuse of industrial and agricultural wastes as supplementary cementitious materials (SCMs) in concrete and mortar productions contribute to sustainable development. In this context, fluid catalytic cracking catalyst residue (spent FCC), a byproduct from the petroleum industry and petrol refineries, have been studied as SCM in blended Portland cement in the last years. Nevertheless, another environmental friendly alternative has been conducted in order to produce alternative binders with low CO2 emissions. The use of aluminosilicate materials in the production of alkali-activated materials (AAMs) is an ongoing research topic which can present low CO2 emissions associated. Hence, this paper studies some variables that can influence the production of AAM based on spent FCC. Specifically, the influence of SiO 2/Na2O molar ratio and the H2O/spent FCC mass ratio on the mechanical strength and microstructure are assessed. Some instrumental techniques, such as SEM, XRD, pH and electrical conductivity measurements, and MIP are performed in order to assess the microstructure of formed alkali-activated binder. Alkali activated mortars with compressive strength up to 80 MPa can be formed after curing for 3 days at 65°C. The research demonstrates the potential of spent FCC to produce alkali-activated cements and the importance of SiO2/Na2O molar ratio and the H2O/spent FCC mass ratio in optimising properties and microstructure. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
We study the dynamics of the noncommutative fluid in the Snyder space perturbatively at the first order in powers of the noncommutative parameter. The linearized noncommutative fluid dynamics is described by a system of coupled linear partial differential equations in which the variables are the fluid density and the fluid potentials. We show that these equations admit a set of solutions that are monochromatic plane waves for the fluid density and two of the potentials and a linear function for the third potential. The energy-momentum tensor of the plane waves is calculated. © 2013 Elsevier B.V.
Resumo:
Appropriate management of agricultural crop residues could result in increases on soil organic carbon (SOC) and help to mitigate gas effect. To distinguish the contributions of SOC and sugarcane (Saccharum spp.) residues to the short-term CO2-C loss, we studied the infl uence of several tillage systems: heavy offset disk harrow (HO), chisel plow (CP), rotary tiller (RT), and sugarcane mill tiller (SM) in 2008, and CP, RT, SM, moldboard (MP), and subsoiler (SUB) in 2009, with and without sugarcane residues relative to no-till (NT) in the sugarcane producing region of Brazil. Soil CO2-C emissions were measured daily for two weeks after tillage using portable soil respiration systems. Daily CO2-C emissions declined after tillage regardless of tillage system. In 2008, total CO2-C from SOC and/or residue decomposition was greater for RT and lowest for CP. In 2009, emission was greatest for MP and CP with residues, and smallest for NT. SOC and residue contributed 47% and 41%, respectively, to total CO2-C emissions. Regarding the estimated emissions from sugarcane residue and SOC decomposition within the measurement period, CO2-C factor was similar to sugarcane residue and soil organic carbon decomposition, depending on the tillage system applied. Our approach may define new emission factors that are associated to tillage operations on bare or sugarcane-residue-covered soils to estimate the total carbon loss.
Resumo:
ABSTRACT: The objective of this study was to evaluate the effect of inclusion of lipid residue of biodiesel originated in the processing of palm oil (Elaeis guineensis) in the diet on the digestibility of feedlot lambs. Twenty-five crossbred male castrated lambs, weighing 20±1.61 kg, were distributed in randomized blocks with five treatments and five replications. The experimental period lasted 22 days; 15 for diet adaptation, 2 for the adaptation to the indicator LIPE (lignin from Eucalyptus grandis isolated, purified and enriched, UFMG, Minas Gerais) and 5 for fecal sampling. Diets were formulated with 64% concentrate based on corn and soybean meal, 31% Massai grass (Panicum maximum cv. Massai) hay and 5% lipid supplementation from increasing levels of substitution of 0, 25, 50, 75 and 100% of palm oil for biodiesel oil from palm residue. The lambs were offered two meals a day, at 7h00 and 16h00. There was linear effect of inclusion of the residue from palm oil biodiesel on dry matter intake. There was no change in digestibility of nutrients except for ether extract. The use of biodiesel from palm oil residue up to 100% replacement for the lipid supplementation of sheep positively influences the consumption without altering the digestibility of nutrients.
Resumo:
Laccases (benzendiol:oxygen oxidoreductases; EC 1.10.3.2) catalyze the oxidation of a broad range of substrates, such as polyphenols, dyes and pollutants, and thus these enzymes are widely applied in industrial, biotechnological and environmental fields. In order to improve their biotechnological applications, a deep knowledge of structural factors involved in controlling their activity, in various experimental conditions and on different substrates, is required. In the present study, a laccase from the mushroom Rigidoporus lignosus was kinetically characterized. In particular, the stability, the effects of pH, ionic strength and fluoride ion concentration on the kinetic parameters were investigated, using three di-hydroxy-benzene isomers (1,2-dihydroxy-benzene, 1,3-dihydroxy-benzene and 1,4-dihydroxy-benzene) as substrates. The catalytic constant values of the laccase showed a bell-shaped pH profile, with the same optimum pH and pK(a) values for all tested substrates. This behavior appears to be due to the presence of an ionizable residue in the enzyme active site. To identify this residue, the enzyme was derivatized with diethylpyrocarbonate to modify accessible histidine residues, which, according to structural data, are present in the active site of this enzyme. The kinetic behavior of the derivatized laccase was compared with that of the native enzyme and the derivatized residues were identified by mass spectrometry. Mass spectrometry and kinetic results suggest the main role of His-457 in the control of the catalytic activity of laccase from R. lignosus. (C) 2013 Elsevier B.V. All rights reserved.